P. Srihari et al. / Tetrahedron Letters 50 (2009) 2420–2424
2423
OAc
OAc
O
mCPBA
DCM, 0 oC to rt.
OAc OBn
26
O
OAc
OBn
27
O
O
O
OAc
OAc
O
mCPBA
DCM, 0 oC to rt.
3 h, 80%
O
OAc OH
O
OAc OH
6a
7
O
O
epi-synparvolide A
Scheme 7. Synthesis of epi-synparvolide A.
5. Pereda-Miranda, R.; Fragoso-Serrano, M.; Cerda-Garcia-Roas, C. M. Tetrahedron
2001, 57, 47–53.
6. Davies-Coleman, M. T.; English, R. B.; Rivett, D. E. A. Phytochemistry 1987, 26,
1497–1499.
7. Davies-Coleman, M. T.; Rivett, D. E. A. Phytochemistry 1996, 41, 1085–1092.
8. Srihari, P.; Rajendar, G.; Srinivasa Rao, R.; Yadav, J. S. Tetrahedron Lett. 2008, 49,
5590–5592.
9. Srihari, P.; Prem Kumar, B.; Subbarayudu, K.; Yadav, J. S. Tetrahedron Lett. 2007,
48, 6977–6981.
10. Chattopadhyay, A.; Dhotare, B. Tetrahedron: Asymmetry 1998, 2715–2723.
11. Kotsuki, H.; Kadota, I.; Ochi, M. J. Org. Chem. 1990, 55, 4417–4422.
12. Hiyama, T.; kobayashi, K.; Nishide, K. Bull. Chem. Jpn. 1987, 60, 2127–2137.
13. Kramp, G. J.; Kim, M.; Gais, H.-J.; Vermeeren, C. J. Am. Chem. Soc. 2005, 127,
17910–17920.
14. Prusov, E.; Röhm, H.; Maier, M. E. Organometallics 2006, 8, 1025–1028. In our
case tert.butyl ketone was formed as the major by product (ꢁ50% yield).
15. (a) Matsumara, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997,
119, 8738–8739; A similar procedure was followed as given in: (b) Jung, W.-H.;
harrison, C.; Shin, Y.; Fournier, J.-H.; Balachandran, R.; Raccor, B. S.; Sikorski, R.
P.; Vogt, A.; Curran, D. P.; Day, B. W. J. Med. Chem. 2007, 50, 2951–2966.
16. Bettelli, E.; Cherubini, P.; D0Andrea, P.; Passacantilli, P.; Piancatelli, G.
Tetrahedron 1998, 54, 6011–6981.
17. (a) Marshall, J. A.; Lu, Z.-H.; Johns, B. A. J. Org. Chem. 1998, 63, 817–823. The
major product was compared with the compound obtained earlier by Noyori
reduction and was also characterized by NOE correlations.; For reaction model
see: (b) Guillarme, S.; Ple, K.; Banchet, A.; Liard, A.; Haudrechy, A. Chem. Rev.
2006, 106, 2355–2403; For other asymmetric alkynylation reaction of
aldehydes see: (c) Braga, A. L.; Appelt, H. R.; Silveira, C. C.; Wessjohann, L. A.;
Schneider, P. H. Tetrahedron 2002, 58, 10413–10416; (d) Anand, N. K.; Carreira,
E. M. J. Am. Chem. Soc. 2001, 123, 9687–9688.
TBS deprotection, and lactonization of compound 9 were achieved
by treating with a mixture of AcOH:1 N HCl:THF (1:1:1) solution to
yield 2519 in 65% yield. With the required skeleton in hand the rest
was to manipulate the protective groups. Thus the precursor for
the target synthesis was achieved by diacetylation of the two sec-
ondary alcohols in 25 to give the diacetate 26. TiCl4 mediated deb-
enzylation20 without affecting acetate moieties or double bond
gave the desired target compound 7 in 78% yield (Scheme 6). The
product 7 obtained was characterized and its rotation was found
to be similar with a small variation to that of the natural product
[
a]
D
ꢀ12.2 (c 1.2, CHCl3) {lit.7
[a
]
D
ꢀ11 (c 1.0, CHCl3). Also the 1H
NMR and 13C NMR were comparable with the data of the natural
product.21 Thus the structure of the natural product synparvolide
B has been confirmed with 6R, 30S, 50S and 60S, 1Z configuration
and is in agreement as established by Rivette et al.
Attempts to synthesize the synparvolide A by epoxidation of
compound 26 with mCPBA were unsuccessful which may be attrib-
uted to steric hindrance by benzyl moiety and lactone ring. How-
ever, when epoxidation was attempted on compound 7, we
ended up with the other isomer which is attributed to the chela-
tion of mCPBA with hydroxyl group. Thus, we have also accom-
plished the synthesis of epi-synparvolide A 6a (Scheme 7).
In conclusion, we have accomplished the first total synthesis of
synparvolide B and re-confirmed its structure. Also an analog of
synparvolide A, epi-synparvolide A has been synthesized. Stereo-
controlled reduction using Noyori catalyst, coupling of alkyl iodide
with Weinreb amide, Wadsworth–Emmons olefination, and one-
pot ketal and TBS deprotection followed by lactonization are the
key steps involved in this synthesis. Investigations for the biologi-
cal activity of the presently synthesized compounds and synthesis
of other analogs are currently underway.
18. Srihari, P.; Bhasker, E. V.; Harshavardhan, S. J.; Yadav, J. S. Synthesis 2006, 23,
4041–4045.
19. Friesen, R. W.; Bissada, S. Tetrahedron Lett. 1994, 35, 5615–5618.
20. Enders, D.; Dhulut, S.; Steinbusch, D.; Herrbach, A. Chem. Eur. J. 2007, 13, 3942–
3949.
21. Analytical data for selected intermediates and synparvolide B: Spectral data for
compound 10: Colorless oil; ½a D25
ꢂ
+0.5 (c 1.2, CHCl3). 1H NMR (300 MHz, CDCl3);
IR (neat) mmax: 2955(s), 2932(s), 2234(w), 1648(s), 1613(m), 1513(s), 1465(m),
1250(s), 1099(s), 1036(m), 839(s), 779(s), 580(w) cmꢀ1 1H NMR (300 MHz,
;
CDCl3): d 7.24 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 4.73 (t, J = 6.6 Hz, 1H),
4.46 (m, 2H), 4.04 (dt, J = 12.6, 4.7 Hz, 1H), 3.80 (s, 3H), 3.84–3.73 (m, 1H),
3.64–3.50 (m, 1H), 2.28–2.64 (m, 2H), 2.05–1.96 (m, 2H), 1.68–1.51 (m, 9H),
1.42–1.32 (m, 2H), 1.28 (d, J = 6.0 Hz, 3H), 0.90 (s, 9H), 0.15 (s, 3H), 0.11 (3H);
13C NMR (75 MHz, CDCl3): d 184.0, 159.1, 130.2, 129.2, 113.7, 109.1, 94.1, 83.0,
77.2, 76.2, 72.7, 65.2, 59.6, 55.2, 48.4, 38.0, 36.8, 36.5, 25.6, 25.0, 23.8, 23.7,
18.0, 17.5, ꢀ4.6, ꢀ5.1; mass (ESI-MS) m/z: 548 (M++NH4); HRMS(ESI) calcd for
C30H46O6NaSi (M+Na)+, 530.3063; found 530.3056. Compound 18: Colorless oil;
Acknowledgment
A.B.R. thanks CSIR, New Delhi for financial assistance.
½
a 2D5
ꢂ
ꢀ10.7 (c 1.2, CHCl3); IR (neat)
m
max: 3450 (br m), 2933 (s), 2857 (m), 1613
(w), 1513 (s), 1363 (w), 1249 (s), 1099 (s), 838 (s), 779 (m)cmꢀ1
;
1H NMR
References and notes
(300 MHz, CDCl3): d 7.19 (d, J = 9.0 Hz, 2H), 6.81 (d, J = 9.0 Hz, 2H), 4.62–4.54
(m, 2H), 4.38 (dd, J = 14.3, 11.3 Hz, 2H), 3.93–3.45 (m, 2H), 3.78 (s, 3H), 3.77–
3.68 (m, 1H), 3.58–3.45 (m, 2H), 2.99 (d,–OH, J = 6.0 Hz, 2H), 1.91 (q, J = 6.0 Hz,
2H), 1.84–1.77 (m, 2H), 1.66–1.34 (m, 10H), 1.24 (d, J = 6.0 Hz, 3H), 0.88 (s, 9H),
0.12 (s, 3H), 0.09 (s, 3H); 13C NMR (75 MHz, CDCl3): d 159.0, 130.4, 129.1,
113.6, 109.1, 86.4, 84.1, 78.9, 76.3, 72.6, 65.9, 60.5, 59.8, 55.1, 39.8, 38.7, 36.7,
36.6, 25.7, 25.0, 23.9, 23.8, 18.1, 17.1, ꢀ4.5, ꢀ5.1; mass (ESI-MS) m/z: 550
(M++NH4); HRMS (ESI) calcd for C30H52NO6Si (M+NH4)+, 532.3220; found
1. (a) Davies-Coleman, M. T.; Rivett, D. E. A. Fortschritte der Chemie organischer
Naturstoffe 1989, 55, 1; (b) Buck, S. B.; Hardouin, C.; Ichikwaya, S.; Soenen, D. R.;
Gauss, C. M.; Hwang, I.; Swingle, M. R.; Bonness, K. M.; Honkanen, R. E.; Boger,
D. L. J. Am. Chem. Soc. 2003, 125, 15694–15695; (c) Bialy, L.; Waldman, H. Chem.
Eur. J. 2004, 10, 2759–2780; (d) Negishi, E.; Kotora, M. Tetrahedron 1997, 53,
6707–6738; (e) Davies-Coleman, M. T.; Rivett, D. E. A. Prog. Chem. Org. Nat. Prod.
1989, 55, 1–35; (f) Dickinson, J. M. Nat. Prod. Rep. 1993, 10, 71–97; (g) Collett, L.
A.; Davies-Coleman, M. T.; Rivett, D. E. A. Prog. Chem. Org. Nat. Prod. 1998, 75,
181–209.
2. Hohanson, G. C.; French, J. C. J. Org. Chem. 1985, 50, 462–466.
3. Bohlmann, F.; Suwita, A. Phytochemistry 1979, 18, 677–679.
4. Alemany, A.; Marquez, C.; Pascual, C.; Valverde, S.; Martinez-Ripoll, M.; Fayos,
J.; Perales, A. Tetrahedron Lett. 1979, 20, 3583–3586.
532.3211. Compound 18a: Colorless oil; ½a D25
ꢂ
ꢀ2.5 (c 1.2, CHCl3); 1H NMR
(300 MHz, CDCl3): d 7.23 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 4.66–4.56
(m, 2H), 4.40 (dd, J = 14.7, 11.3 Hz, 2H), 3.78 (s, 3H), 3.83–3.73 (m, 1H), 3.69–
3.48 (m, 3H), 3.05 (br s, OH, 1H), 1.94 (q, J = 6.2 Hz, 2H), 1.90–1.82 (m, 2H),
1.66–1.50 (m, 8H), 1.43–1.32 (m, 2H), 1.26 (d, J = 6.0 Hz, 3H), 0.89 (s, 9H), 0.13
(s, 3H), 0.10 (s, 3H); 13C NMR (75 MHz, CDCl3):
d
159.0, 130.3, 129.1,
113.6,109.0, 86.3, 84.3, 80.1, 76.3, 72.5, 65.7, 61.0, 59.7, 55.0, 40.1, 38.6, 36.7,