2202
H. Wang et al. / Tetrahedron Letters 50 (2009) 2200–2203
Table 3
Acknowledgments
Enantioselective heterogeneous epoxidation of a
,b-unsaturated ketones with L1/Zna
Financial supports from the National Natural Science Founda-
O
O
1) L1 (10 mol %)
tion of China (No. 20632060, 20532050), the Chinese Academy of
Sciences, the Major Basic Research Development Program of China
(Grant No. 2006CB806106), the Science and Technology Commis-
sion of Shanghai Municipality and the Merck Research Laboratories
are gratefully acknowledged.
ZnEt2 (28 mol %), r.t.
R
R
O
2) CMHP (1.2 equiv.), r.t.
1a- 1i
2a- 2i
Entry
R
Time (h)
Epoxide
Yieldb (%)
eec (%)
1
2
3
4
5
6
7
8
9
Ph
5.5
4.5
4.5
4.5
4.5
5
6
6
15
2a
2b
2c
2d
2e
2f
2g
2h
2i
76
90
85
99
97
81
73
93
61
91
91
91
91
87
90
81
73
93
Supplementary data
4-ClC6H5
4-FC6H5
4-BrC6H5
4-NO2C6H5
2-BrC6H5
Et
Supplementary data associated with this article can be found, in
n-Pr
t-Bu
References
1. For reviews on the applications of epoxy ketones in organic synthesis see:
Lauret, C. Tettrahedron: Asymmetry 2001, 12, 2359–2383.
a,b,c
See footnotes in Table 2.
2. For reviews of catalytic enantioselective epoxidation see: (a) Xia, Q.-H.; Ge, H.-
Q.; Ye, C.-P.; Liu, Z.-M.; Su, K.-X. Chem. Rev. 2005, 105, 1603–1662; (b) Porter,
M. J.; Skidmore, J. Chem. Commun. 2000, 1215–1225.
In view of the persistent insolubility of the L1/Zn assembly in
the reaction systems, the heterogeneous nature of the catalysis
and the catalyst reuse were examined in the epoxidation of chal-
cone 1a (Table 4). The catalyst, prepared by mixing L1 with Et2Zn
in 1,4-dioxane followed by removal of the solvent, washing with
diethyl ether and drying in vacuo, was isolated as an amorphous
white solid. X-Ray powder diffraction analysis confirmed the
amorphous nature of the solid, whereas SEM images revealed that
the solid was composed of micrometer-sized noncrystalline parti-
cles. While the epoxidation proceeded smoothly in the presence of
the L1/Zn solid, the inactivity of the filtrate was consistent with the
heterogeneous nature of the catalysis. After completion of the reac-
tion, the solid catalyst L1/Zn was separated from the reaction mix-
ture by filtration under argon. The inductively coupled plasma
(ICP) spectroscopic analysis of the liquid phase showed that no
detectable zinc (<1 ppm) was leached into the solution. The recov-
ered solid catalyst was recharged with diethyl ether, chalcone, and
CMHP for the next run. The catalyst was reused for five consecutive
runs, however, with notable decrease in reactivity after the second
run for unknown reasons. Increasing the catalyst loading led to an
enhancement in both reactivity and enantioselectivity during cat-
alyst recycle.
3. For selected references on the use of chiral-metal complexes in
enantioselective epoxidation of enones, see: Zinc: (a) Enders, D.; Zhu, J.;
Raabe, G. Angew. Chem., Int. Ed. 1996, 35, 1725–1728; (b) Yu, H.-B.; Zheng, X.-F.;
Lin, Z.-M.; Hu, Q.-S.; Huang, W.-S.; Pu, L. J. Org. Chem. 1999, 64, 8149–8155; (c)
Minatti, A.; Dötz, K. H. Synlett 2004, 1634–1636; (d) Minatti, A.; Dötz, K. H. Eur.
J. Org. Chem. 2006, 268–276; Lanthanides: (e) Bougauchi, M.; Watanabe, S.;
Arai, T.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1997, 119, 2329–2330; (f)
Daikai, K.; Kamaura, M.; Inanaga, J. Tetrahedron Lett. 1998, 39, 7321–7322;
Magnesium: (g) Elston, C. L.; Jackson, R. F. W.; MacDonald, S. J. F.; Murray, P. J.
Angew. Chem., Int. Ed. 1997, 36, 410–412.
4. (a) Arai, S.; Tsuge, H.; Shioiri, T. Tetrahedron Lett. 1998, 39, 7563–7566; (b)
Corey, E. J.; Zhang, F.-Y. Org. Lett. 1999, 1, 1287–1290; (c) Lygo, B.; Wainwright,
P. G. Tetrahedron 1999, 55, 6289–6300; (d) Ooi, T.; Ohara, D.; Tamura, M.;
Maruoka, K. J. Am. Chem. Soc. 2004, 126, 6844–6845.
5. (a) Juliá, S.; Masana, J.; Vega, J. C. Angew. Chem., Int. Ed. Engl. 1980, 19, 929–931;
(b) Porter, M. J.; Roberts, S. M.; Skidmore, J. Bioorg. Med. Chem. 1999, 7, 2145–
2156; (c) Gerlach, A.; Geller, T. Adv. Synth. Catal. 2004, 346, 1247–1249.
6. For comprehensive reviews, see: (a) Shi, Y. Acc. Chem. Res 2004, 37, 488–496;
(b) Yang, D. Acc. Chem. Res. 2004, 37, 497–505; (c) Wong, O. A.; Shi, Y. Chem.
Rev. 2008, 108, 3958–3987.
7. (a) Marigo, M.; Franzén, J.; Poulsen, T. B.; Zhuang, W.; Jørgensen, K. A. J. Am.
Chem. Soc. 2005, 127, 6964–6965; (b) Lattanzi, A. Org. Lett. 2005, 7, 2579–2582;
(c) Sundén, H.; Ibrahem, I.; Córdova, A. Tetrahedron Lett. 2006, 47, 99–103; (d)
Lee, S.; MacMillan, D. W. C. Tetrahedron 2006, 62, 11413–11424; (e) Wang, X.;
List, B. Angew. Chem., Int. Ed. 2008, 47, 1119–1122; (f) Wang, X.; List, B. J. Am.
Chem. Soc 2008, 130, 6070–6071; (g) Lu, X.; Liu, Y.; Sun, B.; Cindric, B.; Deng, L.
J. Am. Chem. Soc 2008, 130, 8134–8135.
8. For the concept of self-supporting strategy for chiral catalyst immobilization,
see reviews: (a) Ding, K.; Wang, Z. In Handbook of Asymmetric Heterogeneous
Catalysis; Ding, K., Uozumi, Y., Eds.; Sage: Weinheim, 2008; pp 323–355; (b)
Wang, Z.; Chen, G.; Ding, K. Chem. Rev. 2009, 109; (c) Ding, K.; Wang, Z.; Wang,
X.; Liang, Y.; Wang, X. Chem. Eur. J. 2006, 12, 5188–5197; (d) Ding, K.; Wang, Z.;
Shi, L. Pure Appl. Chem. 2007, 79, 1531–1540; For examples, see: (e) Guo, H.;
Wang, X.; Ding, K. Tetrahedron Lett. 2004, 45, 2009–2012; (f) Wang, X.; Ding, K.
J. Am. Chem. Soc. 2004, 126, 10524–10525; (g) Liang, Y.; Jing, Q.; Li, X.; Shi, L.;
Ding, K. J. Am. Chem. Soc. 2005, 127, 7694–7695; (h) Wang, X.; Wang, X.; Guo,
H.; Wang, Z.; Ding, K. Chem. Eur. J. 2005, 11, 4078–4088; (i) Wang, X.; Shi, L.; Li,
M.; Ding, K. Angew. Chem., Int. Ed. 2005, 44, 6362–6366; (j) Liang, Y.; Wang, Z.;
Ding, K. Adv. Synth. Catal. 2006, 348, 1533–1538; (k) Shi, L.; Wang, X.; Sandoval,
C. A.; Li, M.; Qi, Q.; Li, Z.; Ding, K. Angew. Chem., Int. Ed 2006, 45, 4108–4112.
9. For the preparation of BINOL, see: (a) Ding, K.; Wang, Y.; Zhang, L.; Wu, Y.;
Matsuura, T. Tetrahedron 1996, 52, 1005–1010; (b) Du, H.; Ji, B.; Wang, Y.; Sun,
J.; Meng, J.; Ding, K. Tetrahedron Lett. 2002, 43, 5273–5276; (c) Wang, Y.; Sun, J.;
Ding, K. Tetrahedron 2000, 56, 4447–4451.
In summary, we have developed a class of chiral self-supported
bis-BINOL–Zn catalysts, which demonstrated good enantioselectiv-
ity and versatility in the heterogeneous catalysis of epoxidation of
enones. The procedure is operationally simple and the catalyst
could be easily recovered and reused several times. Further explo-
ration on the potential application of self-supporting strategy in
other catalytic reactions is underway in this laboratory.
Table 4
Recovery and reuse of the heterogeneous catalyst L1/Zn in the epoxidation of 1aa
Run
Time (h)
Yieldb (%)
Eec (%)
10. For examples: see: (a) Sakane, S.; Maruoka, K.; Yamamoto, H. Terahedron Lett.
1985, 26, 5535–5538; (b) Ding, K.; Ishii, A.; Mikami, K. Angew. Chem., Int. Ed.
1999, 38, 497–501; (c) Mikami, K.; Angelaud, R.; Ding, K.; Ishii, A.; Tanaka, A.;
Sawada, N.; Kudo, K.; Senda, M. Chem. Eur. J. 2001, 7, 730–737; (d)
Corminboeuf, O.; Renaud, P. Org. Lett. 2002, 4, 1735–1738; (e) Du, H.; Long,
J.; Hu, J.; Lin, X.; Ding, K. Org. Lett. 2002, 4, 4349–4352; (f) Costa, A. M.; Jimeno,
C.; Gavenonis, J.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 6929–
6941; (g) Yoshikawa, N.; Kumagai, N.; Matsunaga, S.; Moll, G.; Ohshima, T.;
Suzuki, T.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 2466–2467; (h) Kumagai,
N.; Matsunaga, S.; Kinoshita, T.; Harada, S.; Okada, S.; Sakamoto, S.; Yamaguchi,
K.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 2169–2178; (i) Du, H.; Ding, K. Org.
Lett. 2003, 5, 1091–1093; (j) Du, H.; Zhang, X.; Wang, Z.; Ding, K. Tetrahedron
2005, 61, 9465–9477; (k) Hatano, M.; Miyamoto, T.; Ishihara, K. Adv. Synth.
Catal. 2005, 347, 1561–1568.
1a
2
3
5.5
5.5
9.5
9.5
24
3
3
3
3
20
76
80
54
38
42
99
99
89
63
81
91
92
86
69
54
90
93
91
84
72
4
5
1d
2
3
4
5
a,b,c
d
See footnotes in Table 2.
The loadings of L1 and Et2Zn were 15 mol % and 42 mol %, respectively, relative
11. Typical procedure for the asymmetric epoxidation: To
a Schlenk tube
to 1a.
containing stirred solution of ligand L1 (32.4 mg, 0.05 mmol) in 1,4-
a