Inorg. Chem. 2009, 48, 5605–5607 5605
DOI: 10.1021/ic900664r
S-Nitrosothiol and Nitric Oxide Reactivity at Zinc Thiolates
Matthew S. Varonka and Timothy H. Warren*
Department of Chemistry, Georgetown University, Box 571227, Washington, D.C. 20057
Received April 5, 2009
S-Nitrosothiols undergo reversible transnitrosation reactions at tris
(pyrazolyl)boratozinc thiolates iPr2TpZn-SR. These zinc thiolates
are unreactive toward anaerobic NO but rapidly react with NO in
the presence of O2 or anaerobically with NO2 to release the
S-nitrosothiol RSNO with formation of the corresponding zinc nitrate.
domains in metallothioneins (MTs) with concomitant for-
mation of RSNOs and/or disulfides.11 The release of zinc
from MTs by RSNOs and NO has spurred investigation into
the significance of both zinc and RSNOs in cellular signal
transduction11,12 as well as their roles in respiratory func-
tion.13 Similarly, RSNOs and NO reversibly inhibit DNA
transcription of some zinc fingers,14 metalloproteins in which
Zn-thiolate bonds play especially important structural roles.
Matrix metalloproteinases (MMPs) are a class of zinc
enzymes involved in tissue remodeling connected to both
normal and pathological processes such as inflammation,
wound healing, and cancer.15 The His3Zn2+ site responsible
for MMP activity requires prior disruption of a Zn-SCys
linkage in the enzyme’s latent form to allow for substrate
binding and its subsequent cleavage. Both NO and RSNOs
have been proposed to activate this “cysteine switch”, sug-
gesting a molecular basis for NO and RSNO regulation of
MMP activity.16
Nitric oxide (NO) is implicated in numerous biological
roles ranging from vasodilation in the cardiovascular system1
to signaling in the respiratory system2 to host defense against
microbial pathogens.3 While the various NO synthases gen-
erate NO in vivo, NO itself is unstable in the plasma with an
estimated half-life of 3-5 s.4 Considerably more oxygen-
stable S-nitrosothiols (RSNOs) such asS-nitrosocysteineand
S-nitrosoglutathione circulate at near micromolar levels in
the blood.5 Capable of serving as NO and NO+ donors,6,7
RSNOs have been implicated in a wide variety of physio-
logical functions that often mirror those observed for NO
itself.1,8 The nature of the molecular species involved in the
biological reactivity of RSNOs, however, is clouded by the
facile decomposition of RSNOs into free NO and disulfides
by a copper-catalyzed process.6,9
While transnitrosation between RSNOs and free thiols as
well as the corresponding thiolate anions has been observed
in a variety of media,17,18 NO does not react readily under
anaerobic conditions with free thiols HSR or thiolate anions
-SR in the absence of an oxidant.6 In contrast, few molecular
level details are known for transnitrosation at transition-
metal thiolates,19 though reductive nitrosylation of M-SR
The cleavage or formation of zinc thiolate linkages in
biology is often connected to physiological function.10 In
this context, both NO and RSNOs have been reported to
modify Zn-SR linkages in biological environments. For
instance, Maret and co-workers have shown that NO and
RSNOs release Zn2+ ions from the sulfur-rich binding
(11) Chen, Y.; Irie, Y.; Keung, W. M.; Maret, W. Biochemistry 2002, 41,
8360–8367.
(12) Martinez-Ruiz, A.; Lamas, S. Cardiovasc. Res. 2004, 62, 43–52.
(13) Bernal, P. J.; Leelavanichkul, K.; Bauer, E.; Cao, R.; Wilson, A.;
Wasserloos, K. J.; Watkinds, S. C.; Pitt, B. R.; St. Croix, C. M. Circ. Res.
2008, 102, 1575–1583.
*To whom correspondence should be addressed. E-mail: thw@
georgetown.edu.
(1) Myers, P. R.; Minor, R. L. J.; Guerra, R. J.; Bates, J. N.; Harrison, D.
G. Nature 1990, 345, 161–163.
(2) Gaston, B.; Singel, D.; Doctor, A.; Stamler, J. S. Am. J. Respir. Crit.
Care Med. 2006, 173, 1186–1193.
(3) Chakravortty, D.; Hensel, M. Microb. Infect. 2003, 5, 621–627.
(4) Rassaf, T.; Kleinbongard, P.; Preik, M.; Dejam, A.; Gharini, P.;
Lauer, T.; Erckenbrect, J.; Duschin, A.; Schulz, R.; Ghusch, G.; Feelisch,
M.; Kelm, M. Circ. Res. 2002, 91, 470–477.
(5) Ng, E. S. M.; Kubes, P. Can. J. Physiol. Pharmacol. 2003, 81, 759–764.
(6) Williams, D. L. H. Acc. Chem. Res. 1999, 32, 869–876.
(7) Lee, J.; Chen, L.; West, A. H.; Richeter-Addo, G. B. Chem. Rev. 2002,
102, 1019–1066.
(14) (a) Berendji, D.; Kolb-Bachofen, V.; Zipfel, P. F.; Skerka, C.;
::
::
Carlberg, C.; Kroncke, K. D. Mol. Med. 1999, 5, 721–730. (b) Kroncke,
K.-D.; Carlberg, C. FASEB 2000, 14, 166–173.
(15) (a) Coussens, L. M.; Fingleton, B.; Matrisian, L. M. Science 2002,
295, 2387–2392. (b) Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J.
H. Chem. Rev. 1999, 99, 2735–2776.
(16) (a) Gu, Z.; Kaul, M.; Yan, B.; Kridel, S. J.; Cui, J.; Strongin, A.;
Smith, J. W.; Liddington, R. C.; Lipton, S. A. Science 2002, 297, 1186–1190.
(b) Ridnour, L. A.; Windhausen, A. N.; Isenberg, J. S.; Yeung, N.; Thomas,
D. D.; Vitek, M. P.; Roberts, D. D.; Wink, D. A. Proc. Natl. Acad. Sci. U.S.
A. 2007, 104, 16898–16903. (c) McCarthy, S. M.; Bove, P. F.; Matthews, D.
E.; Akaike, T.; van der Vliet, A. Biochemistry 2008, 47, 5832–5840.
(17) (a) Barnett, D. J.; McAninly, J.; Williams, D. L. H. J. Chem. Soc.,
Perkin Trans. 2 1994, 1131–1133. (b) Barnett, D. J.; Rios, A.; Williams, D. L.
H. J. Chem. Soc., Perkin Trans. 2 1995, 1279–1282.
(8) Ramachandran, N.; Root, P.; Jiang, X.; Hogg, P. J.; Mutus, B. Proc.
Natl. Acad. Sci. U.S.A. 2001, 98, 9539–9544.
(9) Dicks, A. P.; Swift, H. R.; Williams, D. L. H.; Butler, A. R.;
Al-Sa doni, H. H.; Cox, B. G. J. Chem. Soc., Perkin Trans. 2 1996, 481–487.
(10) Maret, W. Biochemistry 2004, 43, 3301–3309.
(18) Perissinotti, L. L.; Turjanski, A. G.; Estrin, D. A.; Doctorovich, F. J.
Am. Chem. Soc. 2005, 127, 486–487.
(19) Varonka, M. S.; Warren, T. H. Inorg. Chim. Acta 2007, 360, 317–328.
r
2009 American Chemical Society
Published on Web 05/26/2009
pubs.acs.org/IC