Y.-L. Zhong et al. / Tetrahedron Letters 50 (2009) 2293–2297
2297
2004, 1018; (h) Skerlj, R. T.; Bogucki, D.; Bridger, G. J. Synlett 2000, 1488; (i)
Piccirilli, J.; Krauch, T.; MacPherson, L. J.; Benner, S. A. Helv. Chim. Acta 1991, 74,
397; (j) Terauchi, H.; Tanitame, A.; Tada, K.; Nakamura, K.; Seto, Y.; Nishikawa,
Y. Chem. Pharm. Bull. 1997, 45, 1027; (k) Rewcastle, G. W.; Palmer, B. D.;
Thompson, A. M.; Bridges, A. J.; Cody, D. R.; Zhou, H.; Fry, D. W.; McMicheal, A.;
Denny, W. A. J. Med. Chem. 1996, 39, 1823; (l) Beutner, G. L.; Kuethe, J. T.; Kim,
M. M.; Yasuda, N. J. Org. Chem. 2009, 74, 789; m Ref. 3.
smoothly. Addition of amino acids (entries 5 and 6) also proved
efficient, generating the corresponding pyrazoles in moderate
yields.12
In summary, the 2,6-difluoro-3-ketopyridines were generated
in high yields through a cost-effective and convenient protocol
involving deprotonation of 2,6-difluoropyridine using n-butyllith-
ium, followed by quenching with a variety of Weinreb amides. A
series of 3,6-disubstituted-1H-pyrazolo[3,4-b]pyridines could then
be efficiently prepared from the 2,6-difluoro-3-ketopyridines in
moderate to good yields by a tandem reaction sequence of selec-
tive nucleophilic substitution of the 6-fluoride, followed by hydra-
zine substitution of the 2-fluoride and pyrazole formation in a one-
pot fashion at very mild conditions (0 °C to room temperature).
This process could be performed with a variety of nitrogen-, oxy-
gen- and sulfur-containing nucleophiles. The high chemo- and reg-
ioselectivities observed in these reactions, the high yields after
multiple bond forming steps, and mild reaction conditions em-
ployed make this process broadly applicable to the synthesis of
the 3,6-disubstituted-1H-pyrazolo[3,4-b]pyridines both in acad-
emy and industry.
5. Moseley, J. D.; Moss, W. O.; Welham, M. J. Org. Proc. Res. Dev. 2001, 5, 491.
6. Marsais, F.; Granger, P.; Queguiner, G. J. Org. Chem. 1981, 46, 4494.
7. Williams, R. L.; Ehrlich, P. P.; Zhai, W.; Hendrix, J. J. Org. Chem. 1987, 52, 2615.
8. General procedure for the preparation of 2,6-difluoro-3-ketopyridines 2. To a
250 mL three-necked round-bottomed flask, equipped with an overhead
stirrer, thermocouple, and nitrogen inlet, was charged 2,6-difluoropyridine
(20.0 mmol), and dry THF (28 mL). The solution was cooled to about À70 °C. n-
butyllithium (2.5 M) in hexane solution (22.0 mmol) was slowly added through
a
syringe pump at <À60 °C over 0.5 h. After complete addition of the
butyllithium, the resulting mixture was stirred at À65 °C for 1 h. Weinreb’s
amide 1a–k (20.0 mmol) in THF (10 mL) solution, which was pre-cooled to
À55 °C, was quickly charged through a cannula without stopping. The resulting
reaction mixture was stirred at À60 °C for 1 h to go to completion. The reaction
mixture was reversely quenched to a solution of 5 N HCl/THF (2:1, 25 mL) at
À15 to À5 °C. The mixture was extracted by MTBE (30 mL). After phase
separation, the organic layer was washed with water (20 mL), and
concentrated. The resulting solid was recrystallized from MTBE/heptane to
afford desired 2,6-difluoro-3-ketopyridines 2. Selected example 2a was
isolated as a colorless crystalline solid, mp 99.2–100.1 °C. 1H NMR (400 MHz,
CDCl3) d: 8.17 (m, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.64 (s, 1H), 7.32 (d, J = 8.0 Hz,
1H), 7.00 (dd, J = 8.0, 4.0 Hz, 1H), 2.52 (s, 3 H). 13C NMR (100 MHz, CDCl3) d:
183.0 (d, J = 4 Hz), 162.9 (dd, J = 252 Hz, 14 Hz), 158.6 (dd, J = 252, 15 Hz), 145.6
(dd, J = 9, 3 Hz), 145.5, 140.0, 135.0, 134.0, 127.9, 126.5, 124.0, 122.6, 119.4 (dd,
J = 27, 6 Hz), 106.9 (dd, J = 35, 6 Hz), 21.9. 19F NMR (376 MHz, CDCl3) d: À61.5
(d, J = 9 Hz), À64.5 (d, J = 9 Hz). HRMS (ESI) calculated for C15H8ClF2NOS (M+H)+
324.0062, found 324.0046.
Acknowledgments
We would like to thank the following individuals from Merck
Research Laboratories: Mr. Robert A. Reamer (NMR) and Drs. Greg
L. Beutner, Paul G. Bulger, David L. Hughes, Jeff T. Kuethe, and Jing-
jun Yin for helpful scientific discussions.
9. Methylamine substitution of 2,6-difluoropyridine-3-carboxylic esters gave a
mixture of methyl 2-fluoro-6-methylaminopyridine-3-carboxylate and
methyl-6-fluoro-2-methylaminopyridine-3-carboxylate in a ratio of 1.8:1–1:3
depending on the solvent used. Please see: (a) Hirokawa, Y.; Horikawa, T.; Kato,
S. Chem. Pharm. Bull. 2000, 48, 1847; (b) Hirokawa, Y.; Yoshida, N.; Kato, S.
Bioorg. Med. Chem. Lett. 1998, 8, 1551; (c) Hirokawa, Y.; Fujiwara, I.; Suzuki, K.;
Harada, H.; Yoshikawa, T.; Yoshida, N.; Kato, S. J. Med. Chem. 2003, 46, 702.
10. 35 wt% of hydrazine aqueous also worked well.
11. The 6-N-tert-butyl group of 6-tert-butylamino-3-substituted-1H-pyrazolo[3,4-
b]pyridines 5a–k could be easily removed to generate the corresponding 6-
amino-3-substituted-1H-pyrazolo[3,4-b]pyridines by TFA treatment. Please
see: Yin, J.; Xiang, B.; Huffman, M. A.; Raab, C. E.; Davies, I. W. J. Org. Chem.
2007, 72, 4554.
12. General procedure for the preparation of 3,6-disubstituted-1H-Pyrazolo[3,4-
b]pyridines 5. To a solution of 2,6-difluoro-3-ketopyridine (3.00 mmol) in
DMAc (5 mL) was slowly added nucleophile (9.00 mmol) at 0–5 °C
(exothermic), and stirred at the same temperature for 0.5–3 h. Then,
hydrazine monohydrate (12.0 mmol) was slowly added at 0–5 °C
(exothermic). After complete addition, the reaction mixture was stirred at 0–
5 °C for 1 h, and at rt for 1–5 h. The reaction mixture was cooled to 0 °C, and
adjusted to pH 5 by 5 N sulfuric acid at <20 °C. Water (10 mL) and EtOAc
(10 mL) were charged, respectively. After phase separation, the aqueous layer
was extracted with EtOAc (10 mL). The combined organic layers were washed
with water (10 mL), brine (10 mL), and concentrated. The residue was purified
by chromatography on silica gel (hexane/EtOAc = 10:1, 5:1) to afford desired
product 3,6-dibstituted-1H-pyrazolo[3,4-b]pyridines 5. Selected example 5a
was isolated as an off-white crystalline solid, m.p. 203.8–203.6 °C. 1H NMR
(400 MHz, CDCl3) d: 10.95 (br s, 1 H), 8.05 (d, J = 8.0 Hz, 1 H), 7.78 (d, J = 8.0 Hz,
1 H), 7.62 (s, 1 H), 7.29 (d, J = 8.0 Hz, 1 H), 6.31 (d, J = 8.0 Hz, 1 H), 4.79 (s, 1 H),
2.50 (s, 3 H), 1.53 (s, 9 H). 13C NMR (100 MHz, CDCl3) d 157.9, 152.8, 137.9,
137.7, 135.8, 135.4, 131.5, 128.7, 126.7, 122.2, 121.8, 117.5, 108.1, 105.7, 51.7,
29.2, 21.6.
References and notes
1. (a) de Mello, H.; Echevarria, A.; Bernardino, A. M.; Canto-Cavalheiro, M.; Leon,
L. L. J. Med. Chem. 2004, 47, 5427–5432; (b) Tuccinardi, T.; Schenone, S.;
Bondavalli, F.; Brullo, C.; Bruno, O.; Mosti, L.; Zizzari, A. T.; Tintori, C.; Manetti,
F.; Ciampi, O.; Trincavelli, M. L.; Martini, C.; Martinelli, A.; Botta, M. J. Med.
Chem. 2008, 3, 898; (c) Cappelli, A.; Nannicini, C.; Gallelli, A.; Giuliani, G.;
Valenti, S.; Mohr, G. P.; Anzini, M.; Mennuni, L.; Ferrari, F.; Caselli, G.; Giordani,
A.; Peris, W.; Makovec, F.; Giorgi, G.; Vomero, S. J. Med. Chem. 2008, 51, 2137;
(d) Lin, R.; Connolly, P. J.; Lu, Y.; Chiu, G.; Li, S.; Yu, Y.; Huang, S.; Li, X.; Emanuel,
S. L.; Middleton, S. A.; Gruninger, R. H.; Adams, M.; Fuentes-Pesquera, A. R.;
Greenberger, L. M. Bioorg. Med. Chem. 2007, 17, 4297; (e) Azevedo, A. R.;
Ferreira, V. F.; de Mello, H.; Leao-Ferreira, L. R.; Jabor, A. V.; Frugulhetti, I. C. P.
P.; Pereira, H. S.; Moussatche, N.; Rolim Bernardino, A. M. Heterocycl. Commun.
2002, 8, 427; (f) Schenone, S.; Bruno, O.; Fossa, P.; Ranise, A.; Menozzi, G.;
Mosti, L.; Bondavalli, F.; Martini, C.; Trincavelli, L. Bioorg. Med. Chem. 2001, 11,
2529.
2. Tucker, T. J.; Sisko, J. T.; Tynebor, R. M.; Williams, T. M.; Felock, P. J.; Flynn, J. A.;
Lai, M.-T.; Liang, Y.; McGaughey, G.; Liu, M.; Miller, M.; Moyer, G.; Munshi, V.;
Perlow-Poehnelt, R.; Prasad, S.; Reid, J. C.; Sanchez, R.; Torrent, M.; Vacca, J. P.;
Wan, B.-L.; Yan, Y. J. Med. Chem. 2008, 51, 6503–6511.
3. (a) Shutske, G. M.; Roehr, J. E. J. Heterocycl. Chem. 1997, 34, 789; b Ref. 2.
4. (a) Gribble, G. W.; Saulnier, M. G. Tetrahedron Lett. 1980, 21, 4137; (b) Gungor,
T.; Marsais, F.; Queguiner, G. J. Organomet. Chem. 1981, 215, 139; (c) Rocca, P.;
Marsais, F.; Godard, A.; Queguiner, G. Tetrahedron 1993, 49, 49–64; (d) Bradlee,
M. J.; Helquist, P. Org. Syn. 1997, 74, 137; (e) Coldwell, M. C.; Gadre, A.; Jerman,
J.; King, F. D.; Nash, D. Bioorg. Med. Chem. Lett. 1995, 5, 39; (f) Awad, H.; Mongin,
F.; Trecourt, F.; Queguiner, G.; Marsais, F.; Blanco, F.; Abarca, B.; Ballesteros, R.
Tetrahedron Lett. 2004, 45, 6697; (g) Schlosser, M.; Rausis, T. Eur. J. Org. Chem.