Angewandte
Chemie
Scheme 3. Synthesis of the fragment C. a) TBDPSCl; b) LiBH4;
c) SO3·pyridine, TEA, DMSO; d) (E)-MeCHCHCH2B(dIpc)2; e) MsCl,
TEA/CH2Cl2 (1:2); f) LiAlH4, diethyl ether, reflux; g) DHP; h) LiCC-
SiMe3; i) TBSOTf; j) K2CO3, MeOH; k) nBuLi, (pinacol)B(OiPr), THF,
À788C; HCl, RT; l) 12, [(H2IMes2)(P(Cy)3)RuCl2CHPh] (15 mol%),
CH2Cl2, reflux; m) [Pd(Ph3P)4] (20 mol%), MeI, TlOEt, THF/H2O (3:1).
Cy =cyclohexyl, DHP=3,4-dihydro-2H-pyran, DMSO=dimethyl sulfox-
ide, Ipc=isopinocampheyl, Mes=2,4,6-trimethylphenyl, Ms=meth-
anesulfonyl, TBS=tert-butyldimethylsilyl, TEA=triethylamine, THP=
tetrahydropyranyl.
Scheme 2. Synthesis of the fragment D. a) TBDPSCl; b) LiCCSiMe3;
c) K2CO3, MeOH; d) CHCCO2Me, NMM, CH2Cl2; e) nBu3SnH, Et3B,
toluene; f) pTsOH, CH2Cl2; g) DIBAL, CH2Cl2, À788C;
h) (Ph3P+CH2OMe)ClÀ, tBuOK, THF; Hg(OAc)2, THF/H2O (10:1),
08C; i) 7, TFA, CH2Cl2 (0.03m); j) BzCl, DMAP, CH2Cl2; k) TBAF, THF;
l) PTSH, DIAD, Ph3P, THF; m) (NH4)6[Mo7O24]·4H2O, H2O2, EtOH.
Bz=benzoyl, DIAD=diisopropyl azodicarboxylate, DIBAL=diisobutyl-
aluminum hydride, DMAP=4-dimethylaminopyridine, NMM=N-meth-
ylmorpholine, PT=1-phenyl-1H-tetrazolyl, TBAF=tetra-n-butylammo-
nium fluoride, TBDPS=tert-butyldiphenylsilyl, TFA=trifluoroacetic
acid, THF=tetrahydrofuran, Ts=4-toluenesulfonyl.
Miyaura reaction was envisioned. Suzuki–Miyaura reaction of
16 using iodomethane did not proceed under the known
reaction conditions;[11] however, in the presence of thallium
ethoxide[12] the diene 17 was obtained in 74% yield.
Selective removal of the TBDPS protecting group of 17,
oxidation, and treatment with TMS diazomethane led to the
methyl ester 18, which was further converted into aldehyde 19
by selective removal of the THP protecting group[13] and
oxidation (Scheme 4). A Julia–Kocienski reaction[4] between
aldehyde 19 and sulfone 9 in the presence of potassium
hexamethyldisilazide proceeded stereoselectively in DMF to
yield the E olefin 20. The seco acid was obtained from 20
through hydrolysis, and it was converted into the correspond-
ing lactone under modified Yamaguchi reaction conditions.[14]
Subsequent removal of the TBS protecting group provided
the allylic alcohol 21. (À)-Amphidinolide K (1)[15] was
prepared in high yield by asymmetric epoxidation of 21 in
the presence of (+)-diethyl tartrate.
Scheme 4. Synthesis of (À)-amphidinolide K (1). a) TBAF, THF, 08C;
b) IBX, DMSO/THF (1:1); NaClO2, NaH2PO4, 2-methyl-2-butene/
tBuOH/H2O (1:1:1); c) TMSCHN2, MeOH; d) BF3·OEt2, EtSH/CH2Cl2
(1:5), À308C; e) DMP, CH2Cl2; f) 9, KHMDS, DMF, À788C, 30 min;
RT, 1 h; g) NaOH, MeOH/H2O (4:1); h) 2,4,6-Cl3C6H2COCl, TEA,
DMAP, toluene, reflux; i) TBAF, THF; j) (+)-DET, Ti(OiPr)4, TBHP,
M.S. (4 ꢀ), CH2Cl2, À208C. DET=diethyl tartrate, DMF=N,N-dime-
thylformamide, DMP=Dess–Martin periodinane, HMDS=1,1,1,3,3,3-
hexamethyldisilazane, IBX=o-iodoxybenzoic acid, M.S.=molecular
sieves, TBHP=tert-butyl hydroperoxide.
Received: October 28, 2008
Revised: January 23, 2009
Published online: February 18, 2009
The present synthesis represents a highly convergent
route to (À)-amphidinolide K (1) requiring 18 steps in the
longest linear sequence (6.8% total yield) from (S)-glycidol
(2). This synthesis presents another successful example of
stereoselective radical cyclization reactions of b-alkoxyacry-
lates.
Keywords: anticancer agents · macrolides · natural products ·
.
radical cyclization · total synthesis
Angew. Chem. Int. Ed. 2009, 48, 2364 –2366
ꢀ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2365