Hu et al.
port, and catalysis.6 Recently, helical aromatic oligoamides7 have
attracted increasing interest for they feature a remarkable
combination of structural predictability, stability, tunability, and
ease of synthesis. Consequently, helical foldamers based on
oligoanthranilamides,8 oligopyridine dicarboxamides,9 quinoline-
derived oligoamides,10 and meta-connected diaryl amides11 have
been developed. Moreover, previous theoretical and experimen-
tal studies demonstrated that variations in macromolecular
architecture have an impact on the physical and chemical
properties of foldamers in solution,12 and structural changes of
aromaticoligoamidesinducedbyionbinding13 andprotonation14,17b
have been described. However, there are only a few studies
directly evaluating the effect of localized shifts in the confor-
FIGURE 1. Local variation of steric interaction related to the amide
s-cis/s-trans isomerization process in oligo(phenanthroline dicarboxa-
mide)s.
mational equilibria of a structural subunit on the consequent
global properties in solid and solution15 induced by solvent16
and temperature effects, and the examples are especially rare
in aromatic oligoamides.
(4) (a) Hecht, S. M.; Huc, I. Foldamers: Structure, Properties and Applica-
tions; Wiley-VCH: Weinheim, Germany, 2007. (b) Gellman, S. H. Acc. Chem.
Res. 1998, 31, 173–180. (c) Hill, D. J.; Prince, R. B.; Hughes, T. S.; Moore,
J. S. Chem. ReV. 2001, 101, 3893–4011. (d) Cheng, R. P.; Gellman, S. H.;
Degrado, W. F. Chem. ReV. 2001, 101, 3219–3232. (e) Seebach, D.; Hook, D. F.;
Glattli, A. Biopolymers 2006, 84, 23–37.
We recently reported a new class of aromatic oligoamides
based on phenanthroline dicarboxamides, which exhibited well-
defined helical secondary structures in solution and in the solid
state.17 Furthermore, we presented the first artificial aromatic
oligoamide based helix-turn-helix (HTH) supersecondary
structure,17b and very recently, we demonstrated the helical
molecular strands derived from the oligo(phenanthroline dicar-
boxamide)s displayed an acid- and base-controlled structural
switching process,17c and also found such helical foldamers
could be applied in folding-induced selective reduction of the
9,10-anthraquinone analogues.17d As part of our continuing
work, we herein experimentally and theoretically characterize
the structural features of the oligo(phenanthroline dicarboxa-
mide)s and their dynamic environment-associated conforma-
tional conversion from secondary to supersecondary structure,
owing to the conversion of the CONH-aryl bond from s-cis
form to s-trans form.
(5) For some helical synthetic examples, see:(a) Seebach, D.; Overhand, M.;
Kuehnle, F. N. M.; Martinoni, B.; Oberer, L.; Hommel, U.; Widmer, H. HelV.
Chim. Acta 1996, 79, 913–941. (b) Nelson, J. C.; Saven, J. G.; Moore, J. S.;
Wolynes, P. G. Science 1997, 277, 1793–1796. (c) Appella, D. H.; Christianson,
L. A.; Klein, D. A.; Richards, M. A.; Powell, D. R.; Gellman, S. H. J. Am.
Chem. Soc. 1999, 121, 7574–7581. (d) van Gorp, J. J.; Vekemans, J. A. J. M.;
Meijer, E. W. Chem. Commun. 2004, 60–61. (e) Claridge, T. D. W.; Long, D. D.;
Baker, C. M.; Odell, B.; Grant, G. H.; Edwards, A. A.; Tranter, G. E.; Fleet,
G. W. J.; Smith, M. D. J. Org. Chem. 2005, 70, 2082–2090. (f) Violette, A.;
Averlant-Petit, M. C.; Semetey, V.; Hemmerlin, C.; Casimir, R.; Graff, R.;
Marraud, M.; Briand, J.-P.; Rognan, D.; Guichard, G. J. Am. Chem. Soc. 2005,
127, 2156–2164. (g) Menegazzo, I.; Fries, A.; Mammi, S.; Galeazzi, R.; Martelli,
G.; Orena, M.; Rinaldi, S. Chem. Commun. 2006, 4915–4917. (h) Goto, H.;
Katagiri, H.; Furusho, Y.; Yashima, E. J. Am. Chem. Soc. 2006, 128, 7176–
7178. (i) Vasudev, P. G.; Ananda, K.; Chatterjee, S.; Aravinda, S.; Shamala,
N.; Balaram, P. J. Am. Chem. Soc. 2007, 129, 4039–4048. (j) Ousaka, N.; Sato,
T.; Kuruda, R. J. Am. Chem. Soc. 2008, 130, 463–365. (k) Baruah, P. K.;
Gonnade, R.; Rajamohanan, P. R.; Hofmann, H.-J.; Sanjayan, G. J. J. Org. Chem.
2007, 72, 5077–5084.
(6) (a) Estroff, L. A.; Incarvito, C. D.; Hamilton, A. D. J. Am. Chem. Soc.
2004, 126, 2–3. (b) Cornelissen, J. J. L. M.; Donners, J. J. J. M.; de Gelder, R.;
Graswinckel, W. S.; Metselaar, G. A.; Rowan, A. E.; Sommerdijk, N. A. J. M.;
Nolte, R. J. M. Science 2001, 293, 676–680.
Results and Discussion
(7) (a) Huc, I. Eur. J. Org. Chem. 2004, 1, 17–29. (b) Gong, B. Acc. Chem.
Res. 2008, 41, 1376–1386. (c) Li, Z.-T.; Hou, J.-H.; Li, C. Acc. Chem. Res.
2008, 41, 1343–1353.
(8) (a) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. Angew. Chem., Int. Ed.
Engl. 1994, 33, 446–448. (b) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am.
Chem. Soc. 1996, 118, 7529–7541. (c) Hamuro, Y.; Hamilton, A. D. Bioorg.
Med. Chem. 2001, 9, 2355–2363.
(9) (a) Berl, V.; Huc, I.; Khoury, R. G.; Krische, M. J.; Lehn, J.-M. Nature
2000, 407, 720–723. (b) Haldar, D.; Jiang, H.; Le´ger, J.-M.; Huc, I. Angew.
Chem., Int. Ed. 2006, 45, 5483–5486. (c) Zhan, C.; Le´ger, J.-M.; Huc, I. Angew.
Chem., Int. Ed. 2006, 45, 4625–4628.
(10) (a) Jiang, H.; Le´ger, J.-M.; Huc, I. J. Am. Chem. Soc. 2003, 125, 3448–
3449. (b) Gillies, E. R.; Deiss, F.; Staedel, C.; Schmitter, J. M.; Huc, I. Angew.
Chem., Int. Ed. 2007, 46, 4081–4084. (c) Dolain, C.; Jiang, H.; Le´ger, J.-M.;
Guionneau, P.; Huc, I. J. Am. Chem. Soc. 2005, 127, 12943–12951. (d) Gillies,
E. R.; Dolain, C.; Le´ger, J.-M.; Huc, I. J. Org. Chem. 2006, 71, 7931–7939. (e)
Gan, Q.; Bao, C.; Kauffmann, B.; Gre´lard, A.; Xiang, J.; Liu, S.; Huc, I.; Jiang,
H. Angew. Chem., Int. Ed. 2008, 47, 1715–1718.
Design Principles. It is difficult to predict the conformation
of a macromolecule or supramolecule; however, a major
structural change of macromolecules or supramolecules some-
times depends on the conformational switching of a small
structural unit.18 Therefore, there has been considerable interest
in understanding, predicting, and controlling the conformation
of small structural units in the past few years.19
The o-phenylenediamide is an important structural unit in the
backbone of oligo(phenanthroline dicarboxamide)s. Since there
is no specific attractive or repulsive interaction between the two
amides of the o-phenylenediamide moieties, it can form s-cis
and s-trans conformations with rotation about the CONH-aryl
bond (Figure 1), which can be a rate-limiting step in the folding
mechanism. The factors that favor specific isomer geometry
around o-phenylenediamide can thus contribute significantly
toward controlling the structures of the oligo(phenanthroline
(11) (a) Yuan, L. H.; Zeng, H. Q.; Yamato, K.; Sanford, A. R.; Feng, W.;
Atreya, H. S.; Sukumaran, D. K.; Szyperski, T.; Gong, B. J. Am. Chem. Soc.
2004, 126, 16528–16537. (b) Yuan, L. H.; Sanford, A. R.; Feng, W.; Zhang,
A. M.; Zhu, J.; Zeng, H. Q.; Li, M. F.; Ferguson, J. S.; Gong, B. J. Org. Chem.
2005, 70, 10660–10669. (c) Sanford, A. R.; Gong, B. Curr. Org. Chem. 2003,
7, 1649–1659.
(12) (a) Balzani, V.; Credi, A.; Venturi, M. Molecular DeVices and Machines;
Wiley-VCH: Weinheim, Germany, 2004. (b) de Silva, A. P.; McClenaghan, N. D.
Chem.sEur. J. 2004, 10, 574–586. (c) Irie, M. Chem. ReV. 2000, 100, 1685–
1716.
(13) (a) Barboiu, M.; Lehn, J.-M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
5201–5206. (b) Stadler, A. M.; Kyritsakas, N.; Lehn, J.-M. Chem. Commun.
2004, 2024–2025.
(14) (a) Dolain, C.; Maurizot, V.; Huc, I. Angew. Chem., Int. Ed. 2003, 42,
2738–2740. (b) Kolomiets, E.; Berl, V.; Odriozola, I.; Stadler, A. M.; Kyritsakas,
N.; Lehn, J.-M. Chem. Commun. 2003, 2868–2869. (c) Kolomiets, E.; Berl, V.;
Lehn, J.-M. Chem.sEur. J. 2007, 13, 5466–5479.
(15) (a) Lockman, J. W.; Paul, N. M.; Parquette, J. R. Prog. Polym. Sci.
2005, 30, 423–452. (b) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am. Chem.
Soc. 1996, 118, 7529–7541.
(16) For examples for structural changes of oligomers induced solvent effects,
see. (a) Hill, D. H.; Moore, J. S. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5053–
5057. (b) Zhao, Y.; Zhong, Z. J. Am. Chem. Soc. 2005, 127, 17894–17901.
(17) (a) Hu, Z.-Q.; Hu, H.-Y.; Chen, C.-F. J. Org. Chem. 2006, 71, 1131–
1138. (b) Hu, H.-Y.; Xiang, J.-F.; Yang, Y.; Chen, C.-F. Org. Lett. 2008, 10,
69–72. (c) Hu, H.-Y.; Xiang, J.-F.; Yang, Y.; Chen, C.-F. Org. Lett. 2008, 10,
1275–1278. (d) Hu, H.-Y.; Xiang, J.-F.; Cao, J.; Chen, C.-F. Org. Lett. 2008,
10, 5035–5038.
(18) (a) Clayden, J.; Lund, A.; Vallverdu´, L.; Helliwell, M. Nature 2004,
431, 966–971. (b) Kern, D.; Zuiderweg, E. R. P. Curr. Opin. Struct. Biol. 2003,
13, 748–757. (c) Seebach, D.; Schreiber, J. V.; Abele, S.; Daura, X.; van
Gunsteren, W. F. HelV. Chim. Acta 2000, 83, 34–57.
(19) Okamoto, I.; Nabeta, M.; Hayakawa, Y.; Morita, N.; Takeya, T.; Masu,
H.; Azumaya, I.; Tamura, O. J. Am. Chem. Soc. 2007, 129, 1892–1893.
4950 J. Org. Chem. Vol. 74, No. 14, 2009