generally shows a higher performance than other regio
isomers has been difficult.
diversity efficiently, is intriguing.10 In addition, recent
progress of the HT-type oligothiophenes as materials for
organic dye-sensitized11,12 and thin-film13 photovoltaic bat-
teries as well as organic TFTs1c prompted us to develop facile
synthetic strategies for such materials. We herein report
stepwise synthesis of HT regioregular oligothiophenes via
iterative palladium-catalyzed CH arylation and halogen
exchange reactions leading to the oligomers bearing 2-4
thiophene units.
On the other hand, transition metal-catalyzed C-H func-
tionalization reactions are of great interest in organic
synthesis since the reaction shows advantages in atom
efficiency compared with related cross coupling with orga-
nometallic compounds.6 The reaction of heteroaromatic
compounds is particularly important because of their wide
utilities in the synthesis of biologically active molecules and
advanced organic materials.7 The catalytic carbon-carbon
bond-forming reaction via C-H functionalization has been
achieved by the reaction of aryl halides.8,9
Synthesis of the HT-type oligothiophene based on the CH
arylation of a 2-bromothiophene derivative at the CH bond
is illustrated in Scheme 1. Since palladium-catalyzed CH
Thereby, a new synthetic strategy for HT oligothiophenes
based on the CH coupling, which improves synthetic
Scheme 1
(3) (a) Wei, Y.; Wang, B.; Tian, J. Tetrahedron Lett. 1995, 36, 665. (b)
Hassan, J.; Lavenot, L.; Gozzi, C.; Lemaire, M. Tetrahedron Lett. 1999,
40, 857. (c) Tamao, K.; Kodama, S.; Nakajima, I.; Kumada, M.; Minato,
A.; Suzuki, K. Tetrahedron 1982, 38, 3347. (d) Yui, K.; Aso, Y.; Otsubo,
T.; Ogura, F. Bull. Chem. Soc. Jpn. 1989, 62, 1539. (e) Gronowits, S.; Peters,
D. Heterocycles 1990, 30, 645. (f) Parrish, J. P.; Jung, Y. C.; Floyd, R. J.;
Jung, K. W. Tetrahedron Lett. 2002, 43, 7899.
(4) (a) Nakayama, J.; Konishi, T.; Murabayashi, S.; Hoshino, M.
Heterocycles 1987, 26, 1793. (b) Xu, Z.; Fichou, D.; Horowitz, G.; Garnier,
F. J. Electronal. Chem. 1989, 267, 339. (c) Buzhansky, L.; Feit, B. A. J.
Org. Chem. 2002, 67, 7523. (d) Ba¨uerle, P.; Fischer, T.; Bidlingmeier, B.;
Stable, A.; Rabe, J. P. Angew. Chem., Int. Ed. Engl. 1995, 34, 303.
(5) Takahashi, M.; Masui, K.; Sekiguchi, H.; Kobayashi, N.; Mori, A.;
Funahashi, M.; Tamaoki, N. J. Am. Chem. Soc. 2006, 128, 10930.
(6) (a) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013. (b) Dyker, G.
Angew. Chem., Int. Ed. 1999, 38, 1698. (c) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. ReV. 2007, 107, 174.
arylation of heteroaromatic compounds we have shown
selectively takes place with an aryl iodide, cross coupling
of iodothiophene 2 and bromothiophene 1 forms HT
bithiophene 3 bearing a C-Br bond. Halogen exchange of
3 into iodide 2′ and following coupling with 1 bring about
an additional extension of a thiophene unit and the iterative
reactions would lead to HT oligothiophenes.
We first performed the synthesis of oligothiophene bearing
a carbazole moiety at the end group. Introduction of the
carbazole group was performed by the palladium-catalyzed
CH arylation of 2-bromo-3-hexylthiophene 4 with N-ethyl-
3-iodocarbazole 5 in the presence of silver nitrate/KF to
obtain the corresponding product 6 in 75% yield. Transfor-
mation of the bromo group into iodide was carried out with
(7) (a) Mori, A.; Sugie, A. Bull. Chem. Soc. Jpn. 2008, 81, 548. (b)
Campeau, L. C.; Stuart, D. R.; Fagnou, K. Aldrichimica Acta 2007, 40, 35.
(c) Zificsak, C. A.; Hlasta, D. J. Tetrahedron 2004, 60, 8991. (d) Satoh, T.;
Miura, M. Chem. Lett. 2007, 36, 200. (e) Seregin, I. V.; Gevorgyan, V.
Chem. Soc. ReV. 2007, 36, 1173, and references therein.
(8) (a) Turner, G. L.; Morris, J. A.; Greaney, M. F. Angew. Chem., Int.
Ed. 2007, 46, 7996. (b) Bellina, F.; Calandri, C.; Cauteruccio, S.; Rossi, R.
Tetrahedron 2007, 63, 1970. (c) Alagille, D.; Baldwin, R. M.; Tamagnan,
G. D. Tetrahedron Lett. 2005, 46, 1349. (d) Kondo, Y.; Komine, T.;
Sakamoto, T. Org. Lett. 2000, 2, 3111. (e) Gottumukkala, A. L.; Doucet,
H. Eur. J. Inorg. Chem. 2007, 23, 3629. (f) Parisien, M.; Valette, D.; Fagnou,
K. J. Org. Chem. 2005, 70, 7578. (g) Pivsa-Art, S.; Satoh, T.; Kawamura,
Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467. (h) Do,
H.-Q.; Kashif Khan, R M.; Daugulis, O. J. Am. Chem. Soc. 2008, 130,
15185
.
(9) (a) Mori, A.; Sekiguchi, A.; Masui, K.; Shimada, T.; Horie, M.;
Osakada, K.; Kawamoto, M.; Ikeda, T. J. Am. Chem. Soc. 2003, 125, 1700.
(b) Masui, K.; Ikegami, H.; Mori, A. J. Am. Chem. Soc. 2004, 126, 5074.
(c) Masui, K.; Mori, A.; Okano, K.; Takamura, K.; Kinoshita, M.; Ikeda,
T. Org. Lett. 2004, 6, 2011. (d) Kobayashi, K.; Sugie, A.; Takahashi, M.;
Masui, K.; Mori, A. Org. Lett. 2005, 7, 5083. (e) Sugie, A.; Kobayashi,
K.; Suzaki, Y.; Osakada, K. Chem. Lett. 2006, 35, 1100. (f) Kobayashi,
K.; Mohamed Ahmed, M. S.; Mori, A. Tetrahedron 2006, 62, 9548. (g)
Arai, N.; Takahashi, M.; Mitani, M.; Mori, A. Synlett 2006, 3170. (h)
Shikuma, J.; Mori, A.; Masui, K.; Matsuura, R.; Sekiguchi, A.; Ikegami,
H.; Kawamoto, M.; Ikeda, T. Chem. Asian J. 2007, 2, 301. (i) Mori, A.;
Shikuma, J.; Kinoshita, M.; Ikeda, T.; Misaki, M.; Ueda, Y.; Komura, M.;
Asaoka, S.; Iyoda, T. Chem. Lett. 2008, 37, 272. (j) Arai, N.; Miyaoku, T.;
Teruya, S.; Mori, A. Tetrahedron Lett. 2008, 49, 1000. (k) Miyaoku, T.;
Mori, A. Heterocycles 2009, 77, 151. (l) Furukawa, H.; Matsumura, S.;
(12) (a) Hara, K.; Tachibana, Y.; Ohga, Y.; Shinpo, A.; Suga, S.;
Sayama, K.; Sugihara, H.; Arakawa, H. Sol. Energy Mater. Sol. Cells 2003,
77, 89. (b) Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.;
Suga, S.; Sayama, K.; Arakawa, H. New J. Chem. 2003, 27, 783. (c) Hara,
K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama,
K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597. (d) Hara,
K.; Dan-oh, Y.; Kasada, C.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.;
Arakawa, H. Langmuir 2004, 20, 4205. (e) Hara, K.; Sato, T.; Katoh, R.;
Furube, A.; Yoshihara, T.; Murai, M.; Kurashige, M.; Ito, S.; Shinpo, A.;
Suga, S.; Arakawa, H. AdV. Funct. Mater. 2005, 15, 246. (f) Wang, Z.-S.;
Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Arakawa, H.;
Sugihara, H. J. Phys. Chem. B 2005, 109, 3907. (g) Hara, K.; Wang, Z.-S.;
Sato, T.; Furube, A.; Katoh, R.; Sugihara, H.; Dan-oh, Y.; Kasada, C.;
Shinpo, A.; Suga, S. J. Phys. Chem. B 2005, 109, 15476. (h) Hara, K.;
Miyamoto, K.; Abe, Y.; Yanagida, M. J. Phys. Chem. B 2005, 109, 23776.
(i) Wang, Z.-S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K. J.
Phys. Chem. 2007, 111, 7224. (j) Katoh, R.; Huijser, A.; Hara, K.; Savenije,
T. J.; Siebbeles, L. D. A. J. Phys. Chem. C 2007, 111, 10741. (k) Wang,
Z.-S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K. AdV. Mater.
2007, 19, 1138. (l) Wang, Z.-S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo,
Sugie, A.; Monguchi, D.; Mori, A. Heterocycles 2009, 79, 303
.
(10) (a) Yokoyama, A.; Yokozawa, T. Macromolecules 2007, 40, 4093.
(b) Yokoyama, A.; Miyakoshi, R.; Yokozawa, T. Macromolecules 2004,
37, 1169. (c) Sheina, E. E.; Liu, J.; Corina lovu, M.; Laird, D. W.;
McCullough, R. D. Macromolecules 2004, 37, 3526. (d) Chen, T. A.; Rieke,
R. D. J. Am. Chem. Soc. 1992, 114, 10087. (e) Miyakoshi, R.; Yokoyama,
A.; Yokozawa, T. J. Am. Chem. Soc. 2005, 127, 17542
.
(11) (a) Koumura, N.; Wang, Z.-S.; Mori, S.; Miyashita, M.; Suzuki,
E.; Hara, K. J. Am. Chem. Soc. 2006, 128, 14256. (b) Wang, Z.-S.; Koumura,
N.; Cui, Y.; Takahashi, M.; Sekiguchi, H.; Mori, A.; Kubo, T.; Furube, A.;
Hara, K. Chem. Mater. 2008, 20, 3993. (c) Miyashita, M.; Sunahara, K.;
Nishikawa, T.; Uemura, Y.; Koumura, N.; Hara, K.; Mori, A.; Abe, T.;
A.; Hara, K. J. Phys. Chem. C 2008, 112, 17011.
(13) (a) Chen, T.-A.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995,
117, 233. (b) Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.;
Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen,
R. A. J.; Meijer, W. W.; Herwig, P.; deLeeuw, D. M. Nature 1999, 401,
685.
Suzuki, E.; Mori, S. J. Am. Chem. Soc. 2008, 130, 17874
.
2298
Org. Lett., Vol. 11, No. 11, 2009