A R T I C L E S
Fioravanti et al.
control, while providing the opportunity to interface the mo-
lecular devices with existing electronic technologies.5
station shuttles in solid-state molecular electronic devices,5
successfully correlating several aspects of their solution-phase,
surface and solid-state behavior.13
Clearly, a key step in the development of electronic (and
many other) applications of synthetic molecular machines will
be transposing working systems from solution phase onto
surfaces and into the solid state.6 Already molecular shuttles
have been used to construct solid-state and surface-based devices
that exhibit switchable conductance,5,7 optical properties,8
wettability,9 porosity,10 and shape.11 Yet, although stimuli-
induced shuttling is strongly implicated in the operation of each
of these systems, reliable methods for anchoring shuttles to solid
supports and strategies for directly observing and fully char-
acterizing their stimuli-induced motions in such environments
have proven particularly challenging over nearly a decade of
study.5-11
We have previously reported14 on another structural type of
electrochemically switchable molecular shuttle; an amide-
based15-19 rotaxane in which net translocation of the macrocycle
can be induced by photochemical or electrochemical reduction
of a 1,8-naphthalimide station. The solution-phase shuttling was
characterized in detail and both states were shown to exhibit
unprecedented positional integrity. Furthermore, the shuttling
motion is reversible and occurs over a rather large distance of
∼1.5 nm on a microsecond time scale (the precise rate is
dependent on solvent and experimental conditions).14 The
relatively large, negative potentials required to cause switching,
however, prevented the operation of such devices on surfaces.20
In fact, despite the sophistication of modern synthetic routes
toward interlocked molecules,12 few classes of rotaxanes have
proved amenable to the construction of molecular shuttles. Still
fewer shuttles operate using electrochemical stimuli, and two
of these are among the only types of shuttle to be studied in
any detail on surfaces. Willner and co-workers have character-
ized the shuttling kinetics of a cationic ring on a single-station
rotaxane in which a cathode acts simultaneously as a redox
reagent, a stopper, and a station.7d,e However, the integral role
of the solid substrate in producing the bistability prevents
comparisons with solution-phase experiments. An extensive
program by Stoddart, Heath, and co-workers has studied the
shuttling behavior of a particular class of redox-switched two-
(12) (a) Amabilino, D. B.; Stoddart, J. F. Chem. ReV. 1995, 95, 2725-2828.
(b) Dietrich-Buchecker, C.; Rapenne, G.; Sauvage, J.-P. Coord. Chem. ReV.
1999, 185-186, 167-176. (c) Fujita, M. Acc. Chem. Res. 1999, 32, 53-
61. (d) Raehm, L.; Hamilton, D. G.; Sanders, J. K. M. Synlett 2002, 1742-
1761. (e) Kim, K. Chem. Soc. ReV. 2002, 31, 96-107. (f) Kay, E. R.; Leigh,
D. A. Top. Curr. Chem. 2005, 262, 133-177. (g) Bogdan, A.; Rudzevich,
Y.; Vysotsky, M. O.; Bo¨hmer, V. Chem. Commun. 2006, 2941-2952. (h)
Hutin, M.; Schalley, C. A.; Bernardinelli, G.; Nitschke, J. R. Chem. Eur.
J. 2006, 12, 4069-4076. (i) Aucagne, V.; Ha¨nni, K. D.; Leigh, D. A.;
Lusby, P. J.; Walker, D. B. J. Am. Chem. Soc. 2006, 128, 2186-2187. (j)
Wang, W.; Wang, L. Q.; Palmer, B. J.; Exarhos, G. J.; Li, A. D. Q. J. Am.
Chem. Soc. 2006, 128, 11150-11159. (k) Vickers, M. S.; Beer, P. D. Chem.
Soc. ReV. 2007, 36, 211-225. (l) Loeb, S. J. Chem. Soc. ReV. 2007, 36,
226-235. (m) Ba¨uerle, P.; Ammann, M.; Wilde, M.; Go¨tz, G.; Mena-
Osteritz, E.; Rang, A.; Schalley, C. A. Angew. Chem., Int. Ed. 2007, 46,
363-368. (n) Blight, B. A.; Wisner, J. A.; Jennings, M. C. Angew. Chem.,
Int. Ed. 2007, 46, 2835-2838. (o) Fuller, A.-M. L.; Leigh, D. A.; Lusby,
P. J. Angew. Chem., Int. Ed. 2007, 46, 5015-5019. (p) Berna´, J.; Crowley,
J. D.; Goldup, S. M.; Ha¨nni, K. D.; Lee, A.-L.; Leigh, D. A. Angew. Chem.,
Int. Ed. 2007, 46, 5709-5713. (q) Nygaard, S.; Laursen, B. W.; Hansen,
T. S.; Bond, A. D.; Flood, A. H.; Jeppesen, J. O. Angew. Chem., Int. Ed.
2007, 46, 6093-6097. (r) Daniell, H. W.; Klotz, E. J. F.; Odell, B.; Claridge,
T. D. W.; Anderson, H. L. Angew. Chem., Int. Ed. 2007, 46, 6845-6848.
(13) Choi, J. W.; Flood, A. H.; Steuerman, D. W.; Nygaard, S.; Braunschweig,
A. B.; Moonen, N. N. P.; Laursen, B. W.; Luo, Y.; DeIonno, E.; Peters, A.
J.; Jeppesen, J. O.; Xu, K.; Stoddart, J. F.; Heath, J. R. Chem. Eur. J. 2006,
12, 261-279.
(14) (a) Brouwer, A. M.; Frochot, C.; Gatti, F. G.; Leigh, D. A.; Mottier, L.;
Paolucci, F.; Roffia, S.; Wurpel, G. W. H. Science 2001, 291, 2124-2128.
(b) Altieri, A.; Gatti, F. G.; Kay, E. R.; Leigh, D. A.; Martel, D.; Paolucci,
F.; Slawin, A. M. Z.; Wong, J. K. Y. J. Am. Chem. Soc. 2003, 125, 8644-
8654.
(15) For other examples of photochemically responsive amide-based molecular
shuttles, see ref 9 and: (a) Wurpel, G. W. H.; Brouwer, A. M.; van
Stokkum, I. H. M.; Farran, A.; Leigh, D. A. J. Am. Chem. Soc. 2001, 123,
11327-11328. (b) Altieri, A.; Bottari, G.; Dehez, F.; Leigh, D. A.; Wong,
J. K. Y.; Zerbetto, F. Angew. Chem., Int. Ed. 2003, 42, 2296-2300. (c)
Bottari, G.; Leigh, D. A.; Pe´rez, E. M. J. Am. Chem. Soc. 2003, 125,
13360-13361. (d) Pe´rez, E. M.; Dryden, D. T. F.; Leigh, D. A.; Teobaldi,
G.; Zerbetto, F. J. Am. Chem. Soc. 2004, 126, 12210-12211. (e) Li, Y.;
Li, H.; Li, Y.; Liu, H.; Wang, S.; He, X.; Wang, N.; Zhu, D. Org. Lett.
2005, 7, 4835-4838. (f) Zhou, W.; Chen, D.; Li, J.; Xu, J.; Lv, J.; Liu, H.;
Li, Y. Org. Lett. 2007, 9, 3929–3932.
(16) For an example of entropy-driven shuttling in an amide-based rotaxane,
see: Bottari, G.; Dehez, F.; Leigh, D. A.; Nash, P. J.; Pe´rez, E. M.; Wong,
J. K. Y.; Zerbetto, F. Angew. Chem., Int. Ed. 2003, 42, 5886-5889.
(17) For examples of chemically responsive amide-based molecular shuttles,
see refs 3b, 8b and the following: (a) Da Ros, T.; Guldi, D. M.; Morales,
A. F.; Leigh, D. A.; Prato, M.; Turco, R. Org. Lett. 2003, 5, 689-691. (b)
Leigh, D. A.; Pe´rez, E. M. Chem. Commun. 2004, 2262-2263. (c) Onagi,
H.; Rebek, J., Jr. Chem. Commun. 2005, 4604-4606. (d) Mateo-Alonso,
A.; Fioravanti, G.; Marcaccio, M.; Paolucci, F.; Jagesar, D. C.; Brouwer,
A. M.; Prato, M. Org. Lett. 2006, 8, 5173-5176. (e) Mateo-Alonso, A.;
Ehli, C.; Aminur Rahman, G. M.; Guldi, D. M.; Fioravanti, G.; Marcaccio,
M.; Paolucci, F.; Prato, M. Angew. Chem., Int. Ed. 2007, 46, 3521-3525.
(f) Huang, Y.-L.; Hung, W.-C.; Lai, C.-C.; Liu, Y.-H.; Peng, S.-M.; Chiu,
S.-H. Angew. Chem., Int. Ed. 2007, 46, 6629-6633.
(18) For examples of pH-responsive amide-based molecular shuttles, see: (a)
Keaveney, C. M.; Leigh, D. A. Angew. Chem., Int. Ed. 2004, 43, 1222-
1224. (b) Leigh, D. A.; Thomson, A. R. Org. Lett. 2006, 8, 5377-5379.
(19) For examples of transition metal-binding amide-based molecular shuttles,
see: (a) Marlin, D. S.; Cabrera, D. G.; Leigh, D. A.; Slawin, A. M. Z.
Angew. Chem., Int. Ed. 2006, 45, 77-83. (b) Marlin, D. S.; Cabrera, D.
G.; Leigh, D. A.; Slawin, A. M. Z. Angew. Chem., Int. Ed. 2006, 45, 1385-
1390.
(5) (a) Mendes, P. M.; Flood, A. H.; Stoddart, J. F. Appl. Phys. A 2005, 80,
1197-1209. For a recent example, see: (b) Green, J. E.; Wook Choi, J.;
Boukai, A.; Bunimovich, Y.; Johnston-Halperin, E.; DeIonno, E.; Luo, Y.;
Sheriff, B. A.; Xu, K.; Shik Shin, Y.; Tseng, H.-R.; Stoddart, J. F.; Heath,
J. R. Nature 2007, 445, 414-417.
(6) (a) Ichimura, K.; Oh, S. K.; Nakagawa, M. Science 2000, 288, 1624-
1626. (b) Rosario, R.; Gust, D.; Garcia, A. A.; Hayes, M.; Taraci, J. L.;
Clement, T.; Dailey, J. W.; Picraux, S. T. J. Phys. Chem. B 2004, 108,
12640-12642. (c) Braunschweig, A. B.; Northrop, B. H.; Stoddart, J. F.
J. Mater. Chem. 2006, 16, 32-44. (d) Khuong, T. A. V.; Nunez, J. E.;
Godinez, C. E.; Garcia-Garibay, M. A. Acc. Chem. Res. 2006, 39, 413-
422. (e) Katsonis, N.; Kudernac, T.; Walko, M.; van der Molen, S. J.; van
Wees, B. J.; Feringa, B. L. AdV. Mater. 2006, 18, 1397-1400. (f) Saha,
S.; Leung, K. C. F.; Nguyen, T. D.; Stoddart, J. F.; Zink, J. I. AdV. Funct.
Mater. 2007, 17, 685-693. (g) Willner, I.; Basnar, B.; Willner, B. AdV.
Funct. Mater. 2007, 17, 702-717. (h) Vacek, J.; Michl, J. AdV. Funct.
Mater. 2007, 17, 730-739. (i) Pollard, M. M.; Lubomska, M.; Rudolf, P.;
Feringa, B. L. Angew. Chem., Int. Ed. 2007, 46, 1278-1280.
(7) (a) Willner, I.; Pardo-Yissar, V.; Katz, E.; Ranjit, K. T. J. Electroanal.
Chem. 2001, 497, 172-177. (b) Sheeney-Haj-Ichia, L.; Willner, I. J. Phys.
Chem. B 2002, 106, 13094-13097. (c) Katz, E.; Sheeney-Haj-Ichia, L.;
Willner, I. Angew. Chem., Int. Ed. 2004, 43, 3292-3300. (d) Katz, E.;
Lioubashevsky, O.; Willner, I. J. Am. Chem. Soc. 2004, 126, 15520-15532.
(e) Katz, E.; Baron, R.; Willner, I.; Richke, N.; Levine, R. D. ChemPhy-
sChem 2005, 6, 2179-2189. (f) Feng, M.; Gao, L.; Deng, Z.; Ji, W.; Guo,
X.; Du, S.; Shi, D.; Zhang, D.; Zhu, D.; Gao, H. J. Am. Chem. Soc. 2007,
129, 2204-2205. (g) Guo, X. F.; Zhou, Y. C.; Feng, M.; Xu, Y.; Zhang,
D. Q.; Gao, H. J.; Fan, Q. H.; Zhu, D. B. AdV. Funct. Mater. 2007, 17,
763-769. (h) Feng, M.; Gao, L.; Du, S. X.; Deng, Z. T.; Cheng, Z. H.; Ji,
W.; Zhang, D. Q.; Guo, X. F.; Lin, X.; Chi, L. F.; Zhu, D. B.; Fuchs, H.;
Gao, H. J. AdV. Funct. Mater. 2007, 17, 770-776.
(8) (a) Steuerman, D. W.; Tseng, H.-R.; Peters, A. J.; Flood, A. H.; Jeppesen,
J. O.; Nielsen, K. A.; Stoddart, J. F.; Heath, J. R. Angew. Chem., Int. Ed.
2004, 43, 6486-6491. (b) Leigh, D. A.; Morales, M. A. F.; Pe´rez, E. M.;
Wong, J. K. Y.; Saiz, C. G.; Slawin, A. M. Z.; Carmichael, A. J.; Haddleton,
D. M.; Brouwer, A. M.; Buma, W. J.; Wurpel, G. W. H.; Leo´n, S.; Zerbetto,
F. Angew. Chem., Int. Ed. 2005, 44, 3062-3067.
(9) Berna´, J.; Leigh, D. A.; Lubomska, M.; Mendoza, S. M.; Pe´rez, E. M.;
Rudolf, P.; Teobaldi, G.; Zerbetto, F. Nat. Mater. 2005, 4, 704-710.
(10) (a) Nguyen, T. D.; Tseng, H.-R.; Celestre, P. C.; Flood, A. H.; Liu, Y.;
Stoddart, J. F.; Zink, J. I. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10029-
10034. (b) Nguyen, T. D.; Liu, Y.; Saha, S.; Leung, K. C.-F.; Stoddart, J.
F.; Zink, J. I. J. Am. Chem. Soc. 2007, 129, 626-634.
(11) (a) Huang, T. J.; Brough, B.; Ho, C.-M.; Liu, Y.; Flood, A. H.; Bonvallet,
P. A.; Tseng, H.-R.; Stoddart, J. F.; Baller, M.; Magonov, S. Appl. Phys.
Lett. 2004, 85, 5391-5393. (b) Liu, Y.; Flood, A. H.; Bonvallet, P. A.;
Vignon, S. A.; Northrop, B. H.; Tseng, H.-R.; Jeppesen, J. O.; Huang, T.
J.; Brough, B.; Baller, M.; Magonov, S.; Solares, S. D.; Goddard, W. A.;
Ho, C.-M.; Stoddart, J. F. J. Am. Chem. Soc. 2005, 127, 9745-9759.
(20) Cecchet, F.; Rudolf, P.; Rapino, S.; Margotti, M.; Paolucci, F.; Baggerman,
J.; Brouwer, A. M.; Kay, E. R.; Wong, J. K. Y.; Leigh, D. A. J. Phys.
Chem. B 2004, 108, 15192-15199.
9
2594 J. AM. CHEM. SOC. VOL. 130, NO. 8, 2008