Zhao et al.
Report
[3] For reviews see: (a) Katritzky, A. R.; Rachwal, S.; Rachwal, B. Recent
Progress in the Synthesis of 1,2,3,4-Tetrahydroquinolines. Tetrahedron
1996, 52, 15031-15070. (b) Zhou, Y.-G. Asymmetric Hydrogenation of
Heteroaromatic Compounds. Acc. Chem. Res. 2007, 40, 1357-1366. (c)
Rueping, M.; Dufour, J.; Schoepke, F. R. Advances in Catalytic Metal-free
Reductions: From Bio-inspired Concepts to Applications in the
Organocatalytic Synthesis of Pharmaceuticals and Natural Products.
Green Chem. 2011, 13, 1084-1105. (d) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.;
Zhou, Y.-G. Asymmetric Hydrogenation of Heteroarenes and Arenes.
Chem. Rev. 2012, 112, 2557-2590. (e) Meng, W.; Feng, X.; Du, H.
Asymmetric Catalysis with Chiral Frustrated Lewis Pairs. Chin. J. Chem.
2020, 38, 625-634.
Chen, Z.-P.; Shi, L.; Zhou, Y.-G. Facile Construction of Three Contiguous
Stereogenic Centers via Dynamic Kinetic Resolution in Asymmetric
Transfer Hydrogenation of Quinolines. Chem. Commun. 2014, 50,
12526-12529.
[6] For reviews, see: (a) Lu, L.-Q.; Chen, J.-R. Xiao, W.-J. Development of
Cascade Reactions for the Concise Construction of Diverse Heterocyclic
Architectures. Acc. Chem. Res. 2012, 45, 1278-1293. (b) Wang,Y.; Lu, H.;
Xu, P.-F. Asymmetric Catalytic Cascade Reactions for Constructing Diverse
Scaffolds and Complex Molecules. Acc. Chem. Res. 2015, 48, 1832-1844.
(c) Chauhan, P.; Mahajan, S.; Enders, D. Achieving Molecular Complexity
via Stereoselective Multiple Domino Reactions Promoted by a Secondary
Amine Organocatalyst. Acc. Chem. Res. 2017, 50, 2809-2821.
[4] For selected examples, see: (a) Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han,
X.-W.; Zhou, Y.-G. Highly Enantioselective Iridium-Catalyzed Hydrogena
-tion of Heteroaromatic Compounds, Quinolines. J. Am. Chem. Soc. 2003,
125, 10536-10537. (b) Xu, L.; Lam, K. H.; Ji, J.; Wu, J.; Fan, Q.-H.; Lo, W.-H.;
Chan, A. S. C. Air-stable Ir-(P-Phos) Complex for Highly Enantioselective
Hydrogenation of Quinolines and Their Immobilization in Poly(ethylene-
glycol) Dimethyl Ether (DMPEG). Chem. Commun. 2005, 1390-1392. (c)
Lu, S.-M.; Wang, Y.-Q.; Han, X.-W.; Zhou, Y.-G. Asymmetric Hydrogenation
of Quinolines and Isoquinolines Activated by Chloroformates. Angew.
Chem. Int. Ed. 2006, 45, 2260-2263. (d) Tang, W.-J.; Zhu, S.-F.; Xu, L.-J.;
Zhou, Q.-L.; Fan, Q.-H.; Zhou, H.-F.; Lam, K. Chan, A. S. C. Asymmetric
Hydrogenation of Quinolines with High Substrate/Catalyst Ratio. Chem.
Commun. 2007, 613-615. (e) Wang, Z.-J.; Deng, G.-J.; Li, Y.; He, Y.-M.;
Tang, W.-J.; Fan, Q.-H. Enantioselective Hydrogenation of Quinolines
Catalyzed by Ir(BINAP)-Cored Dendrimers: Dramatic Enhancement of
Catalytic Activity. Org. Lett. 2007, 9, 1243-1246. (f) Lu, S.-M.; Bolm, C.
Synthesis of Sulfoximine-Derived P, N Ligands and their Applications in
Asymmetric Quinoline Hydrogenations. Adv. Synth. Catal. 2008, 350,
1101-1105. (g) Wang, X.-B.; Zhou, Y.-G. Synthesis of Tunable
[7] For selected examples, see: (a) Han, Z.-Y.; Xiao, H.; Chen, X.-H.; Gong, L.-Z.
Consecutive Intramolecular Hydroamination/Asymmetric Transfer
Hydrogenation under Relay Catalysis of an Achiral Gold Complex/Chiral
Brønsted Acid Binary System. J. Am. Chem. Soc. 2009, 131, 9182-9183. (b)
Ren, L.; Lei, T.; Ye, J.-X.; Gong, L.-Z. Step-Economical Synthesis of
Tetrahydroquinolines by Asymmetric Relay Catalytic Friedländer
Condensation/Transfer Hydrogenation. Angew. Chem. Int. Ed. 2012, 51,
771-774. (c) Patil, N. T.; Raut, V. S.; Tella, R. B. Enantioselective
Cooperative Triple Catalysis: Unique Roles of Au(I)/Amine/Chiral Brønsted
Acid Catalysts in the Addition/Cycloisomerization/Transfer Hydrogenation
Cascade. Chem. Commun. 2013, 49, 570-572. (d) Du, Y.-L.; Hu, Y.; Zhu,
Y.-F.; Tu, X.-F.; Han, Z.-Y.; Gong, L.-Z. Chiral Gold Phosphate Catalyzed
Tandem Hydroamination/Asymmetric Transfer Hydrogenation Enables
Access to Chiral Tetrahydroquinolines. J. Org. Chem. 2015, 80, 4754-4759.
(e) Lim, C. S.; Quach, T. T.; Zhao, Y. Enantioselective Synthesis of
Tetrahydroquinolines by Borrowing Hydrogen Methodology: Cooperative
Catalysis by an Achiral Iridacycle and a Chiral Phosphoric Acid. Angew.
Chem. Int. Ed. 2017, 56, 7176-7180. (f) Xu, C.; Feng, Y.; Li, F.; Han, J.; He,
Y.-M.; Fan, Q.-H. A Synthetic Route to Chiral Benzo-Fused N-Heterocycles
via Sequential Intramolecular Hydroamination and Asymmetric
Bisphosphine Ligands and Their Application in Asymmetric Hydrogenation
of Quinolines. J. Org. Chem. 2008, 73, 5640-5642. (h) Wang, C.; Li, C.; Wu,
X.; Pettman, A.; Xiao, J. pH-Regulated Asymmetric Transfer Hydro-
genation of Quinolines in Water. Angew. Chem. Int. Ed. 2009, 48,
6524-6528. (i) Wang, D.-W.; Wang, X.-B.; Wang, D.-S.; Lu, S.-M.; Zhou,
Y.-G.; Li, Y.-X. Highly Enantioselective Iridium-Catalyzed Hydrogenation of
2-Benzylquinolines and 2-Functionalized and 2,3-Disubstituted
Quinolines. J. Org. Chem. 2009, 74, 2780-2787. (j) Wang, T.; Zhuo, L.-G.;
Li, Z.; Chen, F.; Ding, Z.; He, Y.; Fan, Q.-H.; Xiang, J.; Yu, Z.-X.; Chan, A. S. C.
Highly Enantioselective Hydrogenation of Quinolines Using
Phosphine-Free Chiral Cationic Ruthenium Catalysts: Scope, Mechanism,
and Origin of Enantioselectivity. J. Am. Chem. Soc. 2011, 133, 9878-9891.
(k) Li, B.; Xu, C.; He, Y.-M.; Deng, G.-J.; Fan Q.-H. Asymmetric
Hydrogenation of Bis(quinolin-2-yl)methanes: A Direct Access to Chiral
1,3-Diamines. Chin. J. Chem. 2018, 36, 1169-1173.
Hydrogenation of Anilino-Alkynes. Organometallics 2019, 38, 3979-3990.
[8] For selected examples, see: (a) Jia, Z.-X.; Luo, Y.-C.; Wang, Y.; Chen, L.; Xu,
P.-F.; Wang, B. Organocatalytic Aza-Michael-Michael Cascade Reactions:
A Flexible Approach to 2,3,4-Trisubstituted Tetrahydroquinolines. Chem.
Eur. J. 2012, 18, 12958-12961. (b) Yang, W.; He, H.-X.; Gao, Y.; Du, D.-M.
Organocatalytic Enantioselective Cascade Aza-Michael/Michael Addition
for the Synthesis of Highly Functionalized Tetrahydroquinolines and
Tetrahydrochromanoquinolines. Adv. Synth. Catal. 2013, 355, 3670-3678.
(c) Chen, X.; Qiu, S.; Wang, S.; Wang, H.; Zhai, H. Blue-light-promoted
Carbon-carbon Double Bond Isomerization and Its Application in the
Syntheses of Quinolines. Org. Biomol. Chem. 2017, 15, 6349-6352. (d)
Lee, S. Y.; Jeon, J. Cheon, C.-H. Synthesis of 2-Substituted Quinolines from
2-Aminostyryl Ketones Using Iodide as a Catalyst. J. Org. Chem. 2018, 83,
5177-5186. (e) Lee, S. Y.; Cheon, C.-H. On-Water Synthesis of
[5] For selected examples, see: (a) Rueping, M.; Antonchick, A. P.;
Theissmann, T. A Highly Enantioselective Brønsted Acid Catalyzed
Cascade Reaction: Organocatalytic Transfer Hydrogenation of Quinolines
and their Application in the Synthesis of Alkaloids. Angew. Chem. Int. Ed.
2006, 45, 3683-3686. (b) Guo, Q.-S.; Du, D.-M.; Xu, J. The Development of
Double Axially Chiral Phosphoric Acids and Their Catalytic Transfer
Hydrogenation of Quinolines. Angew. Chem. Int. Ed. 2008, 47, 759-762.
(c) Rueping, M.; Theissmann, T. Asymmetric Brønsted Acid Catalysis in
Aqueous Solution. Chem. Sci. 2010, 1, 473-476. (d) Chen, M -W.; Cai, X.-F.;
2-Substituted Quinolines from 2-Aminochalcones Using Benzylamine as
the Nucleophilic Catalyst. J. Org. Chem. 2018, 83, 13036-13044.
[9] (a) Liao, H.-H.; Hsiao, C.-C.; Sugiono, E.; Rueping, M. Shedding Light on
Brønsted Acid Catalysis-a Photocyclization-reduction Reaction for the
Asymmetric Synthesis of Tetrahydroquinolines from Aminochalcones in
Batch and Flow. Chem. Commun. 2013, 49, 7953-7955. (b) Sugiono, E.;
Rueping, M. A Combined Continuous Microflow Photochemistry and
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2019, 37, XXX-XXX
This article is protected by copyright. All rights reserved.