Alternatively, heating 1 with an alkaloid guest of opposite
chirality can directly yield the opposite enantiomer of diacid
1.
Racemic diacid 1 was prepared in a single step (Scheme
2) by thermal condensation of an aniline (2-amino-3-
Scheme 1. Three-Step Chiral Memory Cycle for Diacid 1 Using
the Alkaloids Quinine or Quinidine (Blue Ovals)
Scheme 2. Synthesis of rac-Diacid 1
methylbenzoic acid) with a cyclic anhydride (3-carboxyph-
thalic anhydride). The reaction proceeds quantitatively in the
solid state at 150 °C for 24 h. Structural characterization of
rac-1 was established by X-ray crystallographic analysis,
which verified the formation of the cyclic imide ring and
the twisted axially chiral structure (Supplementary Info).7
The steric interaction of the aryl methyl and carboxylic
groups with the opposing imide carbonyls forces the aryl
and phthalimide surfaces out of plane (57°), forming enan-
tiomeric rotamers.
sufficiently high (29.6 kcal/mol) that it can maintain its
optical activity for months at rt without measurable isomer-
ization. Diacid 1 is also a small organic molecule, which
opens up applications as a chiral building block, auxiliary,
or catalyst.5
The chiral memory properties of diacid 1 are a conse-
quence of restricted rotation about its central Caryl-Nimide
single bond,6 which generates enantiomeric rotamers (atro-
pisomers) that are stable at room temperature. Thus, at
elevated temperatures, the axially chiral rotamers of 1 are
in equilibrium, and the equilibrium can be biased by
complexation with a chiral guest. On cooling to rt, restricted
rotation is reestablished, which “locks in” the guest-induced
enantiomeric enrichment and allows the guest to be removed.
The entire process is also reversible, and heating diacid 1 in
the absence of guest “erases” the enantiomeric excess.
The chiral memory properties of diacid 1 were initially
studied using CD spectroscopy (Figure 1). First, rac-1 was
(3) (a) Furusho, Y.; Kimura, T.; Mizuno, Y.; Aida, T. J. Am. Chem.
Soc. 1997, 119, 5267–5268. (b) Sugasaki, A.; Ikeda, M.; Takeuchi, M.;
Robertson, A.; Shinkai, S. J. Chem. Soc., Perkin Trans. 1 1999, 3259–
3264. (c) Mizuno, Y.; Aida, T.; Yamaguchi, K. J. Am. Chem. Soc. 2000,
122, 5278–5285. (d) Bellacchio, E.; Lauceri, R.; Gurrieri, S.; Scolaro, L. M.;
Romeo, A.; Purrello, R. J. Am. Chem. Soc. 1998, 120, 12353–12354. (e)
Prins, L. J.; De Jong, F.; Timmerman, P.; Reinhoudt, D. N. Nature 2000,
408, 181–184. (f) Rivera, J. M.; Craig, S. L.; Martin, T.; Rebek, J. Angew.
Chem., Int. Ed. 2000, 39, 2130–2132. (g) Ishi-i, T.; Crego-Calama, M.;
Timmerman, P.; Reinhoudt, D. N.; Shinkai, S. J. Am. Chem. Soc. 2002,
124, 14631–14641. (h) Aimi, J.; Oya, K.; Tsuda, A.; Aida, T. Angew. Chem.,
Int. Ed. 2007, 46, 2031–2035. (i) Rosaria, L.; D’Urso, A.; Mammana, A.;
Purrello, R. Chirality 2008, 20, 411–419. (j) Onouchi, H.; Miyagawa, T.;
Morino, K.; Yashima, E. Angew. Chem., Int. Ed. 2006, 45, 2381–2384. (k)
Morino, K.; Watase, N.; Maeda, K.; Yashima, E. Chem.sEur. J. 2004, 10,
4703–4707. (l) Ishikawa, M.; Maeda, K.; Mitsutsuji, Y.; Yashima, E. J. Am.
Chem. Soc. 2004, 126, 732–733. (m) Mammana, A.; De Napoli, M.; Lauceri,
R.; Purrello, R. Biorg. Med. Chem. 2005, 13, 5159–5163. (n) Welch, C. J.
J. Chromatogr. A 1995, 689, 189–193. (o) Mateos-Timoneda, M. A.; Crego-
Calama, M.; Reinhoudt, D. N. Chem. Soc. ReV. 2004, 33, 363–372. (p)
Yashima, E.; Maeda, K.; Okamoto, Y. Nature 1999, 399, 449–451. (q)
Ziegler, M.; Davis, A. V.; Johnson, D. W.; Raymond, K. N. Angew. Chem.,
Int. Ed. 2003, 42, 665–668. (r) Lauceri, R.; Raudino, A.; Scolaro, L. M.;
Micali, N.; Purrello, R. J. Am. Chem. Soc. 2002, 124, 894–895.
(4) (a) Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema,
E. M. Chem. ReV. 2000, 100, 1789–1816. (b) Guo, P. Z.; Zhang, L.; Liu,
M. H. AdV. Mater. 2006, 18, 177–180.
Figure 1. CD spectra of rac-1 in CH3CN after heating (neat, 125
°C, 24 h) with 2 equiv of quinine (red line) or 2 equiv of quinidine
(blue line). The CD spectra were taken after removal of the chiral
guest by extraction with 0.25 N HCl. The green line is the spectrum
of quinine-templated 1 after heating in the absence of guest (neat,
125 °C, 24 h).
heated neat with quinine or quinidine (2 equiv, 125 °C, 24 h).
The mixture was cooled to rt, dissolved in EtOAc, and
washed with 0.25 N HCl to remove the basic alkaloid guest.
Figure 1 shows the CD spectra of samples of 1 heated neat
with quinine (red line) and quinidine (blue line), respectively.
The Cotton effects in both spectra were assigned to diacid
1, as the CD signals cross from positive to negative ellipticity
(5) Chin, J.; Chong, Y. S.; Bobb, R.; Studnicki, L.; Hong, J. I. Chem.
Commun. 2007, 120–122.
(6) (a) Kishikawa, K.; Yoshizaki, K.; Kohmoto, S.; Yamamoto, M.;
Yamaguchi, K.; Yamada, K. J. Chem. Soc., Perkin Trans. 1 1997, 1233–
1239. (b) Verma, S. M.; Singh, N. B. Aust. J. Chem. 1976, 29, 295–300.
(7) Barooah, N.; Baruah, J. B. Mini-ReV. Org. Chem. 2007, 4, 292–
309.
2600
Org. Lett., Vol. 11, No. 12, 2009