3732
X.-L. Guan et al. / Tetrahedron 65 (2009) 3728–3732
7. (a) Broer, D. J.; Boven, J.; Mol, G. N. Makromol. Chem. 1989, 190, 2225; (b)
Table 3
Chain, S. H.; Hwai, L. C. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 3929; (c)
Cassano, R.; Dbrowski, R.; Dziaduszek, J. Tetrahedron Lett. 2007, 48, 1447; (d)
Raymond, J. T.; Kenichi, T.; Peter, T. J. Am. Chem. Soc. 2006, 128, 12084; (e)
Williams, B. S.; Leatherman, M. D.; Peter, S. W. J. Am. Chem. Soc. 2005, 127,
5132.
The UV–vis and fluorescence spectral data of three styrene monomers (wavelengths
in nm)
Monomers
labs (UV–vis) (nm)
lex (nm)
lem (nm)
Fluorescence quantum
yielda
F (%)
8. (a) Chen, S.; Gao, L. C.; Zhao, X. D.; Zhou, Q. F. Macromolecules 2007, 40, 5718;
(b) Chai, C. P.; Zhu, X. Q.; Zhou, Q. F. Macromolecules 2007, 40, 9361.
9. Zhang, D.; Liu, Y. X.; Zhou, Q. F. Macromolecules 1999, 32, 5183.
10. Catanescu, O.; Chien, L. C. Liq. Cryst. 2006, 33, 115.
11. Zhang, H.; Yu, Z.; Wan, X.; Zhou, Q.-F.; Woo, E.-M. Polymer 2002, 43, 2357.
12. Rajesh, A. S.; Marye, N.; David, G. A. Liq. Cryst. 2000, 27, 801.
7
8
9
381
360
338
387
363
359
471
445
410
97.5
51.2
38.9
a
Estimated by using quinine sulfate (dissolved in 0.05% H2SO4 with a concentra-
tion of 10ꢁ6 M, assuming FPL of 0.55ꢂ0.05) as a standard.
13. Synthesis of 7: Solution of compound 4 (2.4 g, 8.85 mmol) dissolved in dry
triethylamine (30 ml) was added dropwise to a suspension of compound 6
(2.44 g, 7.38 mmol), Pd(PPh3)2Cl2 (0.33 g, 0.47 mmol), triphenylphosphine
(0.24 g, 0.93 mmol), and copper(I) iodide (0.12 g, 0.69 mmol) in dry triethyl-
amine (180 ml) at room temperature under nitrogen. The mixture was stirred
at near 70 ꢀC for 24 h. After cooled to room temperature, the mixture was
filtered and filtrate concentrated in vacuo to remove triethylamine. The crude
product was dissolved in dichloromethane and extracted with aqueous am-
monium chloride solution. The organic phase was then washed with saturated
aqueous sodium chloride and dried over MgSO4. The crude product was iso-
lated by evaporating the solvent and purified by column chromatography
using dichloromethane/pet. ether 1:1 as eluant. Pure product as a light yellow
needle-like crystal was obtained after being recrystallized in acetone; yield: 1.
photoluminescence, electroluminescence, and organic light-emit-
ting diodes (OLEDs) applications.
3. Conclusion
In conclusion, we had designed and synthesized three new
styrene monomers with large
ing diacetylenes, naphthyl, and nitrogen-containing groups, which
were very important monomers for the preparation of high
polymers. PLM and DSC results indicated their nematic liquid
crystalline phases and the good polymerization ability. Measure-
p-electron conjugation length bear-
65 g (42%). 1H NMR (400 MHz, CDCl3)
d (ppm): 0.90–0.94 (m, 3H, –CH3), 3.01
D
n
(s, 6H, –N(CH3)2), 4.06–4.10 (m, 2H, Ar-OCH2–), 5.44 (d, 1H, J¼10.7 Hz, ]CH2),
5.89 (d, 1H, J¼17.5 Hz, ]CH2), 7.10–7.15 (m, 1H, ]CH–), 6.67 (d, 2H, J¼7.2 Hz,
Ar), 7.18–7.71 (11H, Ar), 8.00 (s, 1H, Ar). 13C NMR (CDCl3):
d 14.45, 23.02, 26.17,
29.55, 31.99, 40.59, 68.54, 74.01, 80.17, 84.46, 87.64, 93.81, 107.00, 112.20, 116.
71, 117.20, 119.83, 120.38, 125.50, 127.33, 127.87, 128.60, 129.41, 129.78, 130.49,
ments of
compounds were very high and compound 9 had an extremely high
n value, much higher than most of those reported before. More-
Dn showed that the extrapolated Dn values of these
133.27, 133.71, 134.54, 135.12, 140.87, 150.68, 158.74. IR (KBr)
n
¼3088, 3057,
2951, 2926, 2868, 2802, 2194, 1918, 1622, 1591, 1524, 1365, 1225, 1185, 1017,
916, 895, 818 cmꢁ1. Anal. Calcd: C, 87.49; H, 6.76; N, 2.68. Found: C, 87.09; H,
6.64; N, 2.75. MS m/z (Mþ): 521.
D
over, all the compounds exhibited blue fluorescence and better
fluorescence quantum yields, making them good candidates for
many luminescence applications.
Synthesis of 8: The synthesis method and purification was similar to that of 7,
and a light yellow needle-like crystal was obtained; yield: w35%. 1H NMR
(400 MHz, CDCl3)
d (ppm): 0.88–0.95 (m, 3H, –CH3), 3.90 (s, 2H, –NH2), 4.03–
4.09 (m, 2H, Ar-OCH2–), 5.44 (d, 1H, J¼11.6 Hz, ]CH2), 5.89 (d, 1H, J¼17.0
Hz, ]CH2), 7.09–7.15 (m, 1H, ]CH–), 6.64 (d, 2H, J¼8.4 Hz, Ar), 7.19–7.71
Acknowledgements
(11H, Ar), 7.99 (s, 1H, Ar). 13C NMR (CDCl3):
d 13.96, 22.52, 25.66, 29.04, 31.50,
68.08, 73.52, 79.62, 79.80, 84.10, 87.09, 92.76, 106.54, 112.08, 114.75, 116.24,
116.89, 119.67, 119.99, 124.83, 126.97, 127.57, 128.20, 129.02, 129.42, 130.18, 132.
The work described in this paper was supported by the National
Science Foundation of China (Grant Nos.: 20634010, 20574002,
20874002, and 50743042) and the Science Research Fund of the
Chinese Ministry of Education (No.: 20070420253).
90, 133.14, 133.36, 134.08, 134.75, 140.50, 147.01, 158.39. IR (KBr)
n
¼3383, 3081,
3035, 2949, 2924, 2871, 2859, 2199, 1917, 1617, 1592, 1517, 1390, 1296, 1224,
1181, 1026, 909, 889, 832 cmꢁ1. MS m/z (Mþ): 493.
14. Synthesis of 9: Carbon bisulfide (10.0 ml) was added dropwise to a suspension
of compound
8 (1.75 g, 3.69 mmol) and triethylenediamine hexahydrate
(2.45 g, 21.88 mmol) in toluene (50 ml) at room temperature. The mixture was
stirred at room temperature for 12 h and abundant precipitation was produced.
A yellow power (2.40 g) was obtained by filtration and drying under vacuum.
Then, solution of BTC (0.37 g, 1.26 mmol) dissolved in chloroform (5 ml) was
added dropwise to a suspension of the powder in chloroform (20 ml) at room
temperature. After stirred at room temperature for 4 h, the mixture was heated
under reflux with constant stirring for 2 h. After cooled to room temperature,
the mixture was filtered and filtrate concentrated in vacuo to remove chloro-
form. The crude product was isolated by evaporating the solvent and purified
by column chromatography using EtOAc/pet. ether 1:1 as eluant. Pure product
as a pale yellow needle-like crystal was obtained after being recrystallized in
References and notes
1. (a) Meng, H. H. B.; Dalton, L. R.; Wu, S. T. Mol. Cryst. Liq. Cryst. 1994, 259, 303; (b)
Hsu, C. S.; Tsay, K. T.; Chang, A. C.; Wang, S. R. Liq. Cryst. 1995, 19, 409; (c)
Khoshsima, H.; Ghanadzadeh, A.; Tajalli, H.; Dabrowski, R. J. Mol. Liq. 2006, 129,
169; (d) Yang, D. K.; Lu, Z. J.; Chien, L. C.; Doane, J. W. SID Tech. Dig. 2003, 34,
959; (e) Yang, D. K.; Doane, J. W. Appl. Phys. Lett. 1994, 64, 1905; (f) Fergason, J. L.
SID Tech. Dig. 1985, 16, 68; (g) Wu, S. T. Phys. Rev. A 1992, 30, 1270.
2. Markus, K. T.; Karen, H.; Kim, T. Thin Solid Films 2007, 516, 107; (b) Klasen, M.;
Bremer, M.; Tarumi, K. Jpn. J. Appl. Phys. 2000, 39, L1180.
3. (a) O’Neill, M.; Kelly, S. M. Adv. Mater. 2003, 15, 1135; (b) Kunihiko, O.; Atsushi,
S.; Tomiki, I. Adv. Mater. 2006, 18, 523.
acetone; yield: 1.30 g (67%). 1H NMR (400 MHz, CDCl3)
d (ppm): 0.90–0.94 (m,
3H, –CH3), 1.35–1.87 (8H, –CH2–), 4.06–4.10 (m, 2H, Ar-OCH2–), 5.47 (d, 1H,
J¼11.2 Hz, ]CH2), 5.90 (d, 1H, J¼17.3 Hz, ]CH2), 7.09–7.10 (m, 1H, ]CH–), 7.
4. (a) Takatsu, H.; Takeuchi, K.; Tanaka, Y.; Sasaki, M. Mol. Cryst. Liq. Cryst. 1986,
141, 279; (b) Wu, S. T.; Margerum, J. D.; Ho, M. S.; Hsu, C. S. Mol. Cryst. Liq. Cryst.
1995, 261, 79; (c) Wu, S. T.; Hsu, C. S.; Shyu, K. E. Appl. Phys. Lett. 1999, 74, 344;
(d) Wu, S. T.; Hsu, C. S.; Shyu, K. E. Appl. Phys. Lett. 2000, 77, 957; (e) Gauza, S.;
Wen, C. H.; Wu, S. T.; Hsu, C. S. Jpn. J. Appl. Phys., Part 1 2004, 43, 7634.
5. (a) Sekine, C.; Naoto, K. Liq. Cryst. 2001, 28, 1361; (b) Michael, H.; Toyne, K. J.;
Goodby, J. W. J. Mater. Chem. 2004, 14, 1731; (c) Gauza, S.; Li, J.; Wu, S. T. Liq.
Cryst. 2005, 32, 1077; (d) Seed, A. J. J. Mater. Chem. 2000, 10, 2069.
20–7.73 (12H, Ar), 8.00 (s, 1H, Ar). 13C NMR (CDCl3):
d 14.03, 22.59, 25.74, 29.12,
31.57, 68.11, 73.46, 79.28, 80.40, 84.47, 90.50, 90.90, 106.55, 116.09, 117.11, 119.97,
120.77, 121.89, 123.46, 125.80, 126.93, 127.89, 128.14, 128.92, 129.35, 130.32, 131.
20, 132.80, 132.89, 133.39, 133.87, 134.74, 136.81, 140.56, 158.36. IR (KBr)
n
¼3089, 3061, 2940, 2922, 2858, 2178, 2037, 1847, 1621, 1597, 1503, 1395, 1223,
1180, 1005, 933, 893, 831 cmꢁ1. Anal. Calcd: C, 82.96; H, 5.46; N, 2.61. Found: C,
82.87; H, 5.51; N, 2.69. MS m/z (Mþ): 535.
15. Hu, J. S.; Zhang, B. Y.; Jia, Y. G.; Chen, S. Macromolecules 2003, 36, 9060.
16. Sekine, C.; Iwakura, K.; Konya, N.; Minami, M.; Fujisawa, K. Liq. Cryst. 2001, 28,
1375.
6. (a) Menc, X.; Natansohn, A.; Rochon, P. J. Polym. Sci., Part B: Polym. Phys. 1996,
34, 1461; (b) Nobuhiro, K.; Tetsuro, K.; Tohei, Y. Adv. Mater. 2001, 13, 1337; (c)
Kunihiko, O.; Atsushi, S.; Osamu, T. J. Mater. Chem. 2005, 15, 3395; (d) Yan, X.;
Rafael, V.; Robert, H. G. J. Am. Chem. Soc. 2008, 130, 1735.
17. Hsu, H. F.; Lin, W. C.; Lai, Y. H.; Lin, A. Y. Liq. Cryst. 2003, 30, 939.