Journal of the American Chemical Society
COMMUNICATION
present catalytic asymmetric reaction, it appears that increasing
the ring size of the cyclic enone and the size of the substituent on
the alkyne lead to an increase in the ee of the product. For
example, the reactions of 1a with 2aÀd afforded the reductive
coupling products with enantioselectivites that increased with
the size of the cyclic enone ring. Furthermore, the ee values for
the coupling of cyclic 2-enones with diarylacetylenes 1aÀc were
higher than that with 1-phenyl-1-propyne 1d in most cases
(except for 3j).
A mechanism for this present catalytic reaction that accounts
for the absolute configuration of the product 3a is proposed in
Scheme 1. The reaction is likely initiated by the reduction of
Co(II)7a to Co(I) species 4 by Zn dust. Coordination of 1a at the
equatorial position and 2a with its si face at the axial position of
the Co(I) center to form 5 followed by oxidative cyclization then
gives cobaltacyclopentene intermediate 6.7b Protonation of 6
affords product 3a and a Co(III) species that is reduced by Zn
dust to regenerate Co(I).
In conclusion, we have successfully demonstrated an atom-
economical, cobalt-catalyzed enantioselective reductive coupling
of internal alkynes with cyclic enones. The catalytic reaction
proceeds with high regio- and stereoselectivity and provides
various β-substituted ketones in good yields with high ee values.
The reaction employs an air-stable, less expensive cobalt catalyst,
a mild reducing agent (Zn), and a simple hydrogen source
(water).
K.-M.; Huang, W.-S.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 3442.
(d) Yang, Y.; Zhu, S.-F.; Zhou, C.-Y.; Zhou, Q.-L. J. Am. Chem. Soc. 2008,
130, 14052. (e) Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997,
119, 9065. (f) Chaulagain, M. R.; Sormunen, G. J.; Montgomery, J. J. Am.
Chem. Soc. 2007, 129, 9568. (g) Patel, S. J.; Jamison, T. F. Angew. Chem.,
Int. Ed. 2003, 42, 1364. (h) Miller, K. M.; Jamison, T. F. Org. Lett. 2005,
7, 3077. (i) Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2003,
125, 8076. (j) Zhou, C.-Y.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. J. Am.
Chem. Soc. 2010, 132, 10955. Rh-catalyzed:(k) Shintani, R.; Okamoto,
K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 54.
(l) Hong, Y.-T.; Cho, C.-W.; Skucas, E.; Krische, M. J. Org. Lett. 2007,
9, 3745. (m) Kong, J.-R.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc.
2006, 128, 718. Ir-catalyzed:(n) Skucas, E.; Ngai, M.-Y.; Komanduri,
V.; Krische, M. J. Acc. Chem. Res. 2007, 40, 1394. (o) Ngai, M.-Y.;
Barchuk, A.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 12644.
(4) (a) Sato, F.; Urabe, H. Tetrahedron Lett. 1998, 39, 7329. (b) Jang,
H.-Y.; Hughes, F. W.; Gong, H.; Zhang, J.; Brodbelt, J. S.; Krische, M. J.
J. Am. Chem. Soc. 2005, 127, 6174. (c) Ikeda, S.-I.; Cui, D.-M.; Sato, Y.
J. Am. Chem. Soc. 1999, 121, 4712. (d) Li, W.; Herath, A.; Montgomery, J.
J. Am. Chem. Soc. 2009, 131, 17024. (e) Chowdhury, S. K.; Amarasinghe,
K. K. D.; Heeg, M. J.; Montgomery, J. J. Am. Chem. Soc. 2000, 122, 6775.
(f) Herath, A.; Li, W.; Montgomery, J. J. Am. Chem. Soc. 2008, 130, 469.
(g) Herath, A.; Montgomery, J. J. Am. Chem. Soc. 2008, 130, 8132. (h)
Jang, H. Y.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 7875. (i) Reichard,
H. A.; Micalizio, G. C. Angew. Chem., Int. Ed. 2007, 46, 1440.
(5) (a) Wang, C.-C.; Lin, P.-S.; Cheng, C.-H. J. Am. Chem. Soc. 2002,
124, 9696. (b) Chang, H.-T.; Jayanth, T. T.; Wang, C.-C.; Cheng, C.-H.
J. Am. Chem. Soc. 2007, 129, 12032. (c) Rayabarapu, D. K.; Cheng, C.-H.
Chem.—Eur. J. 2003, 9, 3164. (d) Chang, H.-T.; Jayanth, T. T.; Cheng,
C.-H. J. Am. Chem. Soc. 2007, 129, 4166. (e) Yeh, C.-H.; Korivi, R. P.;
Cheng, C.-H. Angew. Chem., Int. Ed. 2008, 47, 4892. (f) Rayabarapu,
D. K.; Cheng, C.-H. Acc. Chem. Res. 2007, 40, 917. (g) Wang, C.-C.; Lin,
P.-S.; Cheng, C.-H. Tetrahedron Lett. 2004, 42, 6203. (h) Wong, Y.-C.;
Parthasarathy, K.; Cheng, C.-H. J. Am. Chem. Soc. 2009, 131, 18252.
(i) Mannathan, S.; Cheng, C.-H. Chem. Commun 2010, 46, 1923.
(j) Karthikeyan, J.; Jeganmohan, M.; Cheng, C.-H. Chem.—Eur. J.
2010, 16, 8989.
’ ASSOCIATED CONTENT
S
Supporting Information. General experimental proce-
b
dures and characterization details. This material is available free
’ AUTHOR INFORMATION
(6) Lemiꢀere, G. L.; Dommisse, R. A.; Lepoivre, J. A.; Alderweireldt,
F. C.; Hiemstra, H.; Wynberg, H.; Jones, J. B.; Toone, E. J. J. Am. Chem.
Soc. 1987, 109, 1363.
(7) (a) Hilt, G.; Treutwein, J. Angew. Chem., Int. Ed. 2007, 46, 8500.
(b) Takaya, Y.; Ogasawara, M.; Hayashi, T. J. Am. Chem. Soc. 1998,
120, 5579.
Corresponding Author
’ ACKNOWLEDGMENT
We thank the National Science Council of the Republic of
China (NSC 98-2119-M-007-002-MY3) for support of this
research.
’ REFERENCES
(1) For reviews, see: (a) Trost, B. M. Science 1991, 254, 1471.
(b) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259. (c) Trost,
B. M. Acc. Chem. Res. 2002, 35, 695. (d) Wender, P. A.; Bi, F. C.; Gamber,
G. G.; Gosselin, F.; Hubbard, R. D.; Scanio, M. J. C.; Sun, R.; Williams,
T. J.; Zhang, L. Pure Appl. Chem. 2002, 74, 25. (e) Wender, P. A.; Handy,
S. T.; Wright, D. L. Chem. Ind. (London) 1997, 765. (f) Wender, P. A.;
Miller, B. L. In Organic Synthesis: Theory and Applications; Hudlicky, T.,
Ed.; JAI Press: Greenwich, CT, 1993; Vol. 2, p 27.
(2) For reviews, see: (a) Jeganmohan, M.; Cheng, C.-H. Chem.—
Eur. J. 2008, 14, 10876. (b) Trost, B. M.; Toste, F. D.; Pinkerton, A. B.
Chem. Rev. 2001, 101, 2067. (c) Trost, B. M.; Frederiksen, M. U.; Rudd,
M. T. Angew. Chem., Int. Ed. 2005, 44, 6630. (d) Ikeda, S. Acc. Chem. Res.
2000, 33, 511. (e) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890.
(f) Reichard, H. A.; McLaughlin, M.; Chen, M. Z.; Micalizio, G. C. Eur. J.
Org. Chem. 2010, 391.
(3) For asymmetric reductive coupling of alkynes, see: Ni-catalyzed:
(a) Ikeda, S.-I. Angew. Chem., Int. Ed. 2003, 42, 5120. (b) Moslin, R.-M.;
Miller, K.-M.; Jamison, T. F. Chem. Commun. 2007, 4441. (c) Miller,
6944
dx.doi.org/10.1021/ja201827j |J. Am. Chem. Soc. 2011, 133, 6942–6944