Y. Miyake et al. / Tetrahedron Letters 53 (2012) 4580–4583
4583
Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483–
2547.
clarified. The influence of the dendrimer generations on contrast
ability in MRI is now under investigation.
10. Chang, H.-T.; Chen, C.-T.; Kondo, T.; Siuzdak, G.; Sharpless, K. B. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 182–186.
11. 1-(R): White powder. 1H NMR (CDCl3, 400 MHz): d (ppm): 1.98–2.08 (br s, 12H,
OH), 2.83 (br s, 12H, –N(CH2)2N–), 3.49–3.56 (m, 15H), 3.70–4.34 (s, 9H,
–CH(OH)–), 4.32–4.44 (m, 12H, –C6H4CH2–), 4.59–4.64 (m, 9H), 7.16–7.47 (m,
36H, –C6H4–). ESI TOF MS m/z for C87H105N3O18 [M+H]+: 1480.7858.
1-(S): White powder. ESI TOF MS m/z for C87H105N3O18 [M+H]+: 1480.7228.
Preparation of 2-(R) from the reaction of 1-(R) with GdCl3Á6H2O. A solution of
Acknowledgments
This work was partly supported by the Creation of Innovation
Centers for Advanced Interdisciplinary Research Areas Program
‘Innovative Techno-Hub for Integrated Medical Bio-imaging’, and
a Grant-in-Aid for the Global COE Program ‘Integrated Material Sci-
ence’ from the Ministry of Education, Culture, Sports, Science and
Technology (MEXT), Japan. YK acknowledges financial support
from Adaptable and Seamless Technology Transfer Program
through Target-driven R&D (A-STEP), Japan Science and Technol-
ogy Agency (JST). TK acknowledges financial support from the Dai-
wa Securities Health Foundation.
GdCl3Á6H2O (46 mg, 125
solution of 1-(R) (185 mg, 125
stirred at room temperature for 24 h. Then, the solvent, MeOH, was removed
under vacuum to give 2-(R) (202 mg, 116 mol, 93%) as a white powder. 2-(R):
l
mol) in MeOH (1.5 mL) was added dropwise to a
l
mol) in MeOH (1.0 mL), and the mixture was
l
MALDI TOF MS (matrix: DCTB) m/z for C87H105ClGdN3O18 [M-2Cl]+: 1669.6334
(7%), 1670.6258 (46%), 1671.6252 (75%), 1672.6242 (100%), 1673.6264 (80%),
1674.6282 (84%), 1675.6292 (54%), 1676.6334 (25%), 1677.6376 (3%), 1678.
6410 (2%). The same procedure gave 2-(S) in 95% yield. 2-(S): White powder.
ESI-TOF MS m/z for C87H105Cl3GdN3O18 [M]+: 1741.5671 (13%), 1742.5467
(40%), 1743.5668 (100%), 1744.5619 (60%), 1745.5624 (19%), 1746.2629 (14%),
1747.5433 (18%).
12. The increase in the coordination number of free water to the present novel MRI
contrast agents, 2-(R) and 2-(S), was shown by preliminary XAFS
measurements using the SPring 8 synchrotron radiation facility.
References and notes
1. (a) Bammer, R.; Skare, S.; Newbould, R.; Liu, C.; Thijs, V.; Ropele, S.; Clayton, D.
B.; Krueger, G.; Moseley, M. E.; Glover, G. H. NeuroRx 2005, 2, 167–196.
2. (a) Werner, E. J.; Datta, A.; Jocher, C. J.; Raymond, K. N. Angew. Chem., Int. Ed.
13. The strong binding (coordination) ability of 1,4,7-triazacyclononanes as ligands
to transition-metals was shown in the stability of 1,4,7-triazacyclononane-
coordinated Fe, Cu, Ru, and Rh complexes under both acidic and basic
conditions. For Fe: (a) Dorazio, S. J.; Tsitovich, P. B.; Siters, K. E.; Spernyak, J. A.;
Morrow, J. R. J. Am. Chem. Soc. 2011, 133, 14154–14156; For Cu and Ru: (b)
Medvetz, D. A.; Stakleff, K. D.; Schreiber, T.; Custer, P. D.; Hindi, K.; Panzner, M.
J.; Blanco, D. D.; Taschner, M. J.; Tessier, C. A.; Youngs, W. J. J. Med. Chem. 2007,
50, 1703–1706; (c) Chan, S. L.-F.; Kan, Y.-H.; Yip, K.-L.; Huang, J.-S.; Che, C.-M.
Coord. Chem. Rev. 2011, 255, 899–919. For Rh:; (d) Zhou, R.; Wang, Y.; Hu, Y.;
Flood, T. C. Organometallics 1997, 16, 434–441.
14. Malic, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J.
W.; Meijer, E. W.; Paulus, W.; Duncan, R. J. Control. Release 2000, 65, 133-148.
Cytotoxicity examination of 2-(R) and 2-(S). L929 mouse fibroblasts were plated
into each well of 96-multiwell cell culture plates at a density of 1 Â 104 cells/
cm2. The culture medium (D-MEM/F-12 with 10% FBS, 100 U/mL penicillin and
ˇ
2008, 47, 8568–8580; (b) Hermann, P.; Kotek, J.; Kubícek, V.; Lukeš, I. Dalton
Trans. 2008, 3027–3047; (c) Bottrill, M.; Knok, L.; Long, N. J. Chem. Soc. Rev.
2006, 35, 557–571; (d) Caravan, P. Chem. Soc. Rev. 2006, 35, 512–523; (e)
Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. 1999, 99, 2293–
2352.
3. (a) Perazella, M. A. Clin. J. Am. Soc. Nephrol. 2009, 4, 461–469; (b) Perazella, M. A.
Clin. J. Am. Soc. Nephrol. 2008, 3, 649–651.
4. (a) Villaraza, A. J. L.; Bumb, A.; Brechbiel, M. W. Chem. Rev. 2010, 110, 2921–
2959; Bunb, A.; Brechbiel, M. W.; Choyke, P Acta Radiol. 2010, 51, 751–767; (c)
Langereis, S.; Dirksen, A.; Hackeng, T. M.; van Genderen, M. H. P.; Meijer, E. W.
New J. Chem. 2007, 31, 1152–1160; (d) Kobayashi, H.; Brechbiel, M. W. Adv.
Drug Deliv. Rev. 2005, 57, 2271–2286.
5. (a) Vögtle, F.; Richardt, G.; Werner, N. Dendrimer Chemistry; Wiley-VCH:
Weinheim, 2009; (b) Designing Dendrimers; Campagna, S., Ceroni, P.,
100 lg/mL streptomycin) was changed to the fresh medium containing
0.25 mM of the chemicals 24 h after cell seeding. Followed the incubation for
Puntoriero, F., Eds.; John Wiley
& Sons Hoboken: New Jersey, 2012; (c)
48 h at 37 °C under 5% CO2 À95 % air atmosphere, the culture medium was
Astruc, D.; Boisselier, E.; Ornelas, C. Chem. Rev. 2010, 110, 1857–1959.
6. Wiener, E. C.; Brechbiel, M. W.; Brothers, H.; Magin, R. L.; Gansow, O. A.;
Tomalia, D. A.; Lauterbur, P. C. Magn. Reson. Med. 1994, 31, 1–8; (b) Bryant, L. H.,
Jr.; Brechbiel, M. W.; Wu, C.; Bulte, J. W. M.; Herynek, V.; Frank, J. A. J. Magn.
Reson. Imaging 1999, 9, 348–352; (c) Labieniec, M.; Watala, C. Cent. Eur. J. Biol.
2009, 4, 434–451; (d) Kojima, C.; Turkbey, B.; Ogawa, M.; Bernardo, M.; Regino,
C. A. S.; Bryant, L. H., Jr.; Choyke, P. L.; Kono, K.; Kobayashi, H. Nanomedicine
2011, 7, 1001–1008.
7. (a) Kobayashi, H.; Kawamoto, S.; Jo, S.-K.; Bryant, H. L., Jr.; Brechbiel, M. W.;
Star, R. A. Bioconjugate Chem. 2003, 14, 388–394; (b) Langereis, S.; de Lussanet,
Q. G.; van Genderen, M. H. P.; Backes, W. H.; Meijer, E. W. Macromolecules 2004,
37, 3084–3091; (c) KuKowska-Latallo, J. F.; Candido, K. A.; Cao, Z.; Nigavekar, S.
S.; Majoros, I. J.; Thomas, T. P.; Balogh, L. P.; Khan, M. K.; Baker, J. R., Jr. Cancer
Res. 2005, 65, 5317–5324.
replaced to the fresh medium (100
(Nacalai Tesque Inc., Kyoto, Japan; 10
lL) containing Cell Count Reagent SF
lL), and plates were incubated for 3 h at
37 °C. Then, the absorbance at 450 nm was measured by the
spectrophotometer (VersaMax, Molecular Devices Inc., Union City, CA). The
absorbance was normalized by that of cells proliferated with the culture
medium without the chemicals.
15. G.G. Guilbault, Applications of Piezoelectric Quartz Crystal Microbalances, C. Lu,
A.W. Czanderna (Eds.), Elsevier, New York, 1984, pp. 251-280.
Binding ability examination of 2-(R) and 2-(S) with BSA by a quartz crystal
microbalance (QCM) measurement. Binding ability of 2-(R) or 2-(S) to BSA was
evaluated through Affinix-QÒ system (Initium Inc., Tokyo, Japan) according to
the procedure instructed from manufacturer. Briefly, the quartz crystal
adsorbed BSA physically (ca. 0.19 fmol) was placed into 500 lL of solutions
with various concentrations of 2-(R) or 2-(S). Following the diagrammatic
representation of frequency change of the crystal against the concentration of
2-(R) or 2-(S), the dissociation rate constant (Kd) was estimated by non-linear
regression fitting of the saturated adsorption amount at each concentration,
and the association rate constant (Ka) was calculated as 1/Kd.
8. Wiener, E. C.; Auteri, F. P.; Chen, J. W.; Brechbiel, M. W.; Gansow, O. A.;
Schneider, D. S.; Belford, R. L.; Clarkson, R. B.; Lauterbur, P. C. J. Am. Chem. Soc.
1996, 118, 7774–7782.
9. (a) Kolb, H. C.; Sharpless, K. B. In Transition Metals for Organic Synthesis; Beller,
M., Bolm, C., Eds., 2nd Ed.; Wiley-VCH: Weinheim, 2004; pp 275–298. Vol.2; (b)