Journal of the American Chemical Society
Page 14 of 16
(14) Keating, J. T.; Skell, P. S. Carbonium Ions 1970, 2, 573-653.
Author Contributions
1
2
3
4
5
6
7
8
(15) a) Cane, D. E.; Sohng, J. K.; Williard, P. G. J. Org. Chem.
1992, 57, 844-852. b) Strictly speaking, the isolation of 3, 4, and 5
from cultures of S. exfoliatus is simply consistent with, but does
not prove, that these minor shunt metabolites are formed by
PenM. Since individually they represent less than 0.1% of the
total pentalenolactones produced by S. exfoliatus, they have not
been detected by GC-MS analysis of in vitro PenM- or PntM-
catalyzed oxidation of 2.
The manuscript was written through contributions of all
authors. All authors have given approval to the final version
of the manuscript.
ACKNOWLEDGMENT
This work was supported by a grant from the U. S. National
Institutes of Health, GM022172, to D.E.C.
(16) Attempts to remove bound bicine by soaks in bicine-free
buffers under a variety of conditions resulted in collapse of the
protein crystals.
9
REFERENCES
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(1) a) Ortiz de Montellano, P. R. Chem. Rev. 2010, 110, 932-948.
b) Ortiz de Montellano, P. R.; De Voss, J. J. In Cytochrome P450:
Structure, Mechanism and Biochemistry; 3rd ed.; Ortiz de Mon-
tellano, P. R., Ed.; Kluwer Elsevier: New York, 2005, p 183-245.
(2) a) Denisov, I. G.; Grinkova, Y. V.; Baylon, J. L.; Tajkhorshid,
E.; Sligar, S. G. Biochemistry 2015, 54, 2227-2239. b) Poulos, T. L.;
Raag, R. FASEB J. 1992, 6, 674-679.
(3) a) Cupp-Vickery, J. R.; Poulos, T. L. Steroids 1997, 62, 112-
116. b) Nagano, S.; Cupp-Vickery, J. R.; Poulos, T. L. J. Biol. Chem.
2005, 280, 22102-22107. c) Sherman, D. H.; Li, S.; Yermalitskaya,
L. V.; Kim, Y.; Smith, J. A.; Waterman, M. R.; Podust, L. M. J. Biol.
Chem. 2006, 281, 26289-26297. d) Zhao, B.; Lei, L.; Vassylyev, D.
G.; Lin, X.; Cane, D. E.; Kelly, S. L.; Yuan, H.; Lamb, D. C.; Wa-
terman, M. R. J. Biol. Chem. 2009, 284, 36711-36719. e) Yoshimo-
to, F. K.; Guengerich, F. P. J. Am. Chem. Soc. 2014. 136, 15016-
15025. f) Ghosh, D.; Griswold, J.; Erman, M.; Pangborn, W. J.
Steroid Biochem. Mol. Biol. 2010, 118, 197-202. g) Helliwell, C. A.;
Chandler, P. M.; Poole, A.; Dennis, E. S.; Peacock, W. J. Proc.
Natl. Acad. Sci. U S A 2001, 98, 2065-2070. h) Tudzynski, B. Appl.
Microbiol. Biotechnol. 2005, 66, 597-611. i) Lin, H. C.; Tsun-
ematsu, Y.; Dhingra, S.; Xu, W.; Fukutomi, M.; Chooi, Y. H.;
Cane, D. E.; Calvo, A. M.; Watanabe, K.; Tang, Y. J. Am. Chem.
Soc. 2014, 136, 4426-4436.
(4) Zhu, D.; Seo, M. J.; Ikeda, H.; Cane, D. E. J. Am. Chem. Soc.
2011, 133, 2128-2131.
(5) Cane, D. E.; Oliver, J. S.; Harrison, P. H. M.; Abell, C.;
Hubbard, B. R.; Kane, C. T.; Lattman, R. J. Am. Chem. Soc. 1990,
112, 4513-4524.
(6) Rittle, J.; Green, M. T. Science 2010, 330, 933-937.
(7) a) Ogliaro, F.; Harris, N.; Cohen, S.; Filatov, M.; de Visser,
S. P.; Shaik, S. J. Am. Chem. Soc. 2000, 122, 8977-8989. b) Kama-
chi, T.; Yoshizawa, K. J. Am. Chem. Soc. 2003, 125, 4652-4661.
(8) Groves, J. T.; Adhyam, D. V. J. Am. Chem. Soc. 1984, 106,
2177-2181.
(9) a) Ortiz de Montellano, P. R.; Stearns, R. A. J. Am. Chem.
Soc. 1987, 109, 3415-3420. b) Cryle, M. J.; Ortiz de Montellano, P.
R.; De Voss, J. J. J. Org. Chem. 2005, 70, 2455-2469. c) Jiang, Y.;
He, X.; Ortiz de Montellano, P. R. Biochemistry 2006, 45, 533-
542.
(17) The T236 side chain is actually present as a 38:62 mixture
of two conformations, in which the minor conformer has the
side chain hydroxyl H-bonded to water W1, while in the major
conformer the side chain hydroxyl group is hydrogen-bonded to
both water W1 and the neighboring hydroxyl group of the bound
bicine.
(18) Martinis, S. A.; Atkins, W. M.; Stayton, P. S.; Sligar, S. G. J.
Am. Chem. Soc. 1989, 111, 9252-9253.
(19) The precise positions of water molecules in a typical water
relay network, particularly water W1, will of course be altered by
conversion of the substrate-bound complex to the O2-bound
complex
(20) a) Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.;
Maves, S. A.; Benson, D. E.; Sweet, R. M.; Ringe, D.; Petsko, G. A.;
Sligar, S. G. Science 2000, 287, 1615-1622. b) Vidakovic, M.; Sligar,
S. G.; Li, H.; Poulos, T. L. Biochemistry 1998, 37, 9211-9219.
(21) Cupp-Vickery, J. R.; Poulos, T. L. Struct. Biol. 1995, 2, 144-
153.
(22) Taraphder, S.; Hummer, G. J. Am. Chem. Soc. 2003, 125,
3931-3940.
(23) Christianson, D. W. Chem. Rev. 2006, 106, 3412-3442.
(24) Auclair, K.; Hu, Z.; Little, D. M.; Ortiz De Montellano, P.
R.; Groves, J. T. J. Am. Chem. Soc. 2002, 124, 6020-6027.
(25) Rollick, K. L.; Kochi, J. K. J. Am. Chem. Soc. 1982, 104, 1319-
1330.
(26) In SN2 reactions, neopentyl derivatives react ~105 more
slowly than the corresponding propyl compounds. Cf Lowry, T.
H.; Richardson, K. S. Mechanism and Theory in Organic Chemis-
try; Harper & Row: New York, 1976, p 13.
(27) Takamatsu, S.; Xu, L. H.; Fushinobu, S.; Shoun, H.; Ko-
matsu, M.; Cane, D. E.; Ikeda, H. J. Antibiot. 2011, 64, 65-71.
(28) Xu, L. H.; Ikeda, H.; Liu, L.; Arakawa, T.; Wakagi, T.;
Shoun, H.; Fushinobu, S. Appl. Microbiol. Biotechnol. 2015, 99,
3081-3091.
(29) Seo, M. J.; Zhu, D.; Endo, S.; Ikeda, H.; Cane, D. E. Bio-
chemistry 2011, 50, 1739-1754. Tetzlaff, C. N.; You, Z.; Cane, D. E.;
Takamatsu, S.; Omura, S.; Ikeda, H. Biochemistry 2006, 45, 6179-
6186. Jiang, J.; Tetzlaff, C. N.; Takamatsu, S.; Iwatsuki, M.; Ko-
matsu, M.; Ikeda, H.; Cane, D. E. Biochemistry 2009, 48, 6431-
6440.
(30) a) T. Kieser, M. J. B., M. J. Buttner, K. F. Chater, and D. A.
Hopwood Practical Streptomyces Genetics.; John Innes Founda-
tion: Norwich, UK, 2000. b) Sambrook, J.; Russell, D. W. Molecu-
lar Cloning: A Laboratory Manual, Third Edition; Cold Spring
Harbor Laboratory Press: Cold Spring Harbor, New York, 2001.
(31) Bradford, M. Anal. Biochem. 1976, 72, 248-254.
(32) Kabsch, W. Acta Crystallogr., Section D, Biol. Crystallogr.
2010, 66, 125-132.
(10) a) Newcomb, M.; Letadicbiadatti, F. H.; Chestney, D. L.;
Roberts, E. S.; Hollenberg, P. F. J. Am. Chem. Soc. 1995, 117,
12085-12091. b)
Newcomb, M.; Shen, R.; Choi, S. Y.; Toy, P.
H.; Hollenberg, P. F.; Vaz, A. D. N.; Coon, M. J. J. Am. Chem. Soc.
2000, 122, 2677-2686.
(11) Newcomb has suggested that carbocation intermediates
might not be generated by the usual Compound I intermediate
but by direct insertion of HO+ into the target CH bond by the
precursor hydroxyferric species (Compound 0) (Cf. ref 10). This
alternative mechanism has not been generally accepted, howev-
er, nor is it supported by the results of QM/MM calculations (Cf.
ref 1a, 12).
(12) Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel,
W. Chem. Rev. 2010, 110, 949-1017.
(13) Wilt, J. W.; Free radicals; Interscience: 1973; Vol. 1, p 333-
501.
(33) Collaborative Computational Project, N. Acta Crystallogr.,
Section D, Biol. Crystallogr. 1994, 50, 760-763.
(34) McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.;
Winn, M. D.; Storoni, L. C.; Read, R. J. J. Appl. Crystallogr. 2007,
40, 658-674.
ACS Paragon Plus Environment