Communications
CH2Cl2 (1 mL) at À788C. After stirring at this temperature for 1 h,
H.-S. Byun, S. Wang, R. Bittman, Tetrahedron Lett. 1994, 35,
505 – 508; c) J. Sun, X. Han, B. Yu, Carbohydr. Res. 2003, 338,
827 – 833; d) I. Carvalho, S. L. Scheuerl, K. P. R. Kartha, R. A.
Field, Carbohydr. Res. 2003, 338, 1039 – 1043.
the reaction was quenched by addition of Et3N (0.15 mL), and the
whole mixture was partitioned between EtOAc and saturated
aqueous NaHCO3. The organic extract was washed with brine and
dried over anhydrous Na2SO4. Filtration and evaporation in vacuo
furnished the crude products, whose ratio was determined to be 7.8:1
by 500-MHz 1H NMR spectroscopic analysis. For easy purification, a
solution of the crude mixture in EtOAc (12 mL) and CH2Cl2 (2 mL)
was vigorously stirred with 10% aqueous HCl (2 mL) for 10 min,
during which time the oxazoline 9 was completely hydrolyzed to form
the corresponding glycopyranose. The whole mixture was extracted
with EtOAc, and the organic extract was washed successively with
saturated aqueous NaHCO3 and brine, then dried over anhydrous
Na2SO4. Filtration and evaporation in vacuo followed by flash column
chromatography (silica gel, toluene/acetone 7:1) afforded disacchar-
ide 8 (77.2 mg, 84%) as a white solid.
[7] Lubineau and co-workers reported that the Sn(OTf)2-mediated
glycosidation of 2-acetamido-2-deoxy-a-d-glucosyl chloride with
a range of alcohols afforded b-glycosides in good yields. They
suggested that the corresponding oxazoline is not an intermedi-
ate in the reaction since the rate and yield of the glycosidations
were considerably lowered when the oxazoline was used as a
starting donor: A. Lubineau, J. Le Gallic, A. Malleron, Tetrahe-
dron Lett. 1987, 28, 5041 – 5044. However, our experiments
revealed that the glucosyl chloride was quantitatively converted
into the oxazoline within 30 min under the reported conditions
and the desired disaccharide was formed at the expense of the
oxazoline. We speculate that hydrogen chloride generated in situ
would act as a promoter for oxazoline activation.
[8] a) S. E. Zurabyan, T. P. Volosyuk, A. J. Khorlin, Carbohydr. Res.
1969, 9, 215 – 220; b) S. E. Zurabyan, T. S. Antonenko, A. Y.
Khorlin, Carbohydr. Res. 1970, 15, 21 – 27; c) M. Kiso, L.
Anderson, Carbohydr. Res. 1979, 72, C12 – C14; d) M. Kiso, L.
Anderson, Carbohydr. Res. 1979, 72, C15 – C17; e) T. Ogawa, K.
Beppu, S. Nakabayashi, Carbohydr. Res. 1981, 93, C6 – C9; f) M.
Kiso, L. Anderson, Carbohydr. Res. 1985, 136, 309 – 323; g) V.
Wittmann, D. Lennartz, Eur. J. Org. Chem. 2002, 1363 – 1367;
h) C. F. Crasto, G. B. Jones, Tetrahedron Lett. 2004, 45, 4891 –
4894.
[9] The effectiveness of glycosyl phosphites as glycosyl donors was
originally demonstrated by the Wong and Schmidt groups in
1992: a) H. Kondo, Y. Ichikawa, C.-H. Wong, J. Am. Chem. Soc.
1992, 114, 8748 – 8750; b) T. J. Martin, R. R. Schmidt, Tetrahe-
dron Lett. 1992, 33, 6123 – 6126.
[10] a) S. Hashimoto, K. Umeo, A. Sano, N. Watanabe, M. Nakajima,
S. Ikegami, Tetrahedron Lett. 1995, 36, 2251 – 2254; b) H.
Tanaka, H. Sakamoto, A. Sano, S. Nakamura, M. Nakajima, S.
Hashimoto, Chem. Commun. 1999, 1259 – 1260, and references
cotechnology/GT-A01E.html.
[11] 2-Acetamido-2-deoxy-d-glycopyranosyl diethyl phosphites were
readily prepared from the corresponding glycopyranoses by
using a previously reported procedure[10a] (ClP(OEt)2, Et3N,
CH2Cl2, 08C).
[12] With the lone exception of THF, where oxazoline 9 was
exclusively produced, the product ratio (8:9 = 0.7:1) was nearly
the same in the other solvents tested (EtCN/CH2Cl2 (1:1) and
toluene/CH2Cl2 (1:1)), although the low solubility of donor 6 in
EtCN and toluene precluded a direct comparison.
[13] I. Azumaya, M. Kotani, S. Ikegami, Synlett 2004, 959 – 962.
[14] a) H. Kondo, S. Aoki, Y. Ichikawa, R. L. Halcomb, H. Ritzen, C.-
H. Wong, J. Org. Chem. 1994, 59, 864 – 877; b) H. Sakamoto, S.
Nakamura, T. Tsuda, S. Hashimoto, Tetrahedron Lett. 2000, 41,
7691 – 7695.
[15] The pKa values for TfOH, TsOH, and MsOH are À14, À6.5, and
À2.6, respectively: a) F. G. Bordwell, Acc. Chem. Res. 1988, 21,
456 – 463; b) E. N. Krylov, O. G. Tokareva, Russ. J. Gen. Chem.
ble/ka-water.gif.
Received: September 14, 2004
Revised: December 6, 2004
Published online: March 3, 2005
Keywords: glycosidation · glycosides · neighboring-group
.
effects · phosphites · synthetic methods
[1] For reviews, see: a) R. A. Dwek, Chem. Rev. 1996, 96, 683 – 720;
b) N. E. Zachara, G. W. Hart, Chem. Rev. 2002, 102, 431 – 438.
[2] For reviews, see: a) J. Banoub, P. Boullanger, D. Lafont, Chem.
Rev. 1992, 92, 1167 – 1195; b) J. Debenham, R. Rodebaugh, B.
Fraser-Reid, Liebigs Ann./Recueil 1997, 791 – 802.
[3] a) Phthaloyl group: R. U. Lemieux, T. Takeda, B. Y. Chung, ACS
Symp. Ser. 1976, 39, 90 – 115; b) 2,2,2-trichloroethoxycarbonyl
group: M. Imoto, H. Yoshimura, T. Shimamoto, N. Sakaguchi, S.
Kusumoto, T. Shiba, Bull. Chem. Soc. Jpn. 1987, 60, 2205 – 2214;
c) allyloxycarbonyl and benzyloxycarbonyl groups: P. Boul-
langer, M. Jouineau, B. Bouammali, D. Lafont, G. Descotes,
Carbohydr. Res. 1990, 202, 151 – 164; d) trichloroacetyl group: G.
Blatter, J. Beau, J. Jacquinet, Carbohydr. Res. 1994, 260, 189 –
202; e) tetrachlorophthaloyl group: J. S. Debenham, R. Madsen,
C. Roberts, B. Fraser-Reid, J. Am. Chem. Soc. 1995, 117, 3302 –
3303; f) dithiasuccinoyl group: E. Meinjohanns, M. Meldal, H.
Paulsen, K. Bock, J. Chem. Soc. Perkin Trans. 1 1995, 405 – 415;
g) N,N-diacetyl group: J. C. Castro-Palomino, R. R. Schmidt,
Tetrahedron Lett. 1995, 36, 6871 – 6874; h) 4,5-dichlorophthaloyl
group: H. Shimizu, Y. Ito, Y. Matsuzaki, H. Iijima, T. Ogawa,
Biosci. Biotechnol. Biochem. 1996, 60, 73 – 76; i) dimethylma-
leoyl group: M. R. E. Aly, J. C. Castro-Palomino, E.-S. I. Ibra-
him, E.-S. H. El-Ashry, R. R. Schmidt, Eur. J. Org. Chem. 1998,
2305 – 2316; j) N,N-dibenzyl group: H. Jiao, O. Hindsgaul,
Angew. Chem. 1999, 111, 421 – 424; Angew. Chem. Int. Ed.
1999, 38, 346 – 348; k) thiodiglycoloyl group: J. C. Castro-Pal-
omino, R. R. Schmidt, Tetrahedron Lett. 2000, 41, 629 – 632.
[4] a) W. Kinzy, R. R. Schmidt, Liebigs Ann. Chem. 1985, 1537 –
1545; b) R. R. Schmidt, M. Behrendt, A. Toepfer, Synlett 1990,
694 – 696; c) T. Tsuda, S. Nakamura, S. Hashimoto, Tetrahedron
Lett. 2003, 44, 6453 – 6457, and references therein.
[5] For methods involving azaglycosidation of glycals, see: a) D. A.
Griffith, S. J. Danishefsky, J. Am. Chem. Soc. 1990, 112, 5811 –
5819; b) V. Di Bussolo, J. Liu, L. G. Huffman, Jr., D. Y. Gin,
Angew. Chem. 2000, 112, 210 – 213; Angew. Chem. Int. Ed. 2000,
39, 204 – 207; c) J. Liu, D. Y. Gin, J. Am. Chem. Soc. 2002, 124,
9789 – 9797.
[6] Although 2-acetamido-2-deoxyglycosyl donors have been used
for the construction of b-glycosides, the reactions are assumed to
proceed via oxazolinium ion intermediates. For recent examples,
see: a) G. Arsequell, L. Krippner, R. A. Dwek, S. Y. C. Wong, J.
Chem. Soc. Chem. Commun. 1994, 2383 – 2384; b) E. R. Kumar,
[16] H. Jona, H. Mandai, W. Chavasiri, K. Takeuchi, T. Mukaiyama,
Bull. Chem. Soc. Jpn. 2002, 75, 291 – 309.
[17] a) J. Foropoulos, Jr., D. D. DesMarteau, Inorg. Chem. 1984, 23,
3720 – 3723; b) K. Ishihara, M. Kubota, H. Yamamoto, Synlett
1996, 1045 – 1046; c) B. Mathieu, L. Ghosez, Tetrahedron Lett.
1997, 38, 5497 – 5500; d) B. Mathieu, L. Ghosez, Tetrahedron
2002, 58, 8219 – 8226; e) A. Hasegawa, K. Ishihara, H. Yama-
moto, Angew. Chem. 2003, 115, 5909 – 5911; Angew. Chem. Int.
Ed. 2003, 42, 5731 – 5733.
2248
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 2245 –2249