ORGANIC
LETTERS
2009
Vol. 11, No. 11
2373-2375
Cobalt-Catalyzed Arylzincation of
Alkynes
Kei Murakami, Hideki Yorimitsu,* and Koichiro Oshima*
Department of Material Chemistry, Graduate School of Engineering, Kyoto UniVersity,
Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
yori@orgrxn.mbox.media.kyoto-u.ac.jp; oshima@orgrxn.mbox.media.kyoto-u.ac.jp
Received April 23, 2009
ABSTRACT
Cobalt(II) bromide catalyzes arylzincation of alkynes with arylzinc iodide•lithium chloride complexes in acetonitrile. The scope of the arylzincation
is wide enough to use unfunctionalized alkynes, such as 6-dodecyne, as well as arylacetylenes. The inherent functional group compatibility
of arylzinc reagents allows preparation of various functionalized styrene derivatives. The reaction is applicable to the efficient and stereoselective
synthesis of a synthetic estrogen and its derivative.
Carbometalation of alkynes is a useful reaction to synthesize
multisubstituted alkenes.1 In particular, carbozincation is one
of the most important reactions due to the high functional
group compatibility of organozinc reagents. Although there
are several reports on transition metal-catalyzed carbozin-
cation of propynoate derivatives,2 alkynyl sulfoxide,3 phe-
nylacetylenes,4 or ynamides,5 carbozincation of unfunction-
alized alkynes such as dialkylacetylene remains an important
challenge.6 Here we wish to report that simple cobalt salts7
can catalyze arylzincation of a wide range of alkynes
including unfunctionalized ones.8 In addition, the reaction
offers a new route to the key structure of various synthetic
estrogen derivatives.
Our investigation began with treatment of 6-dodecyne (1a)
with 4-methylphenylzinc iodide·lithium chloride complex (1
M in THF)9 in toluene at 100 °C in the presence of cobalt
bromide for 1 h. However, the reaction did not proceed
(Table 1, entry 1). Interestingly, the addition of acetonitrile
promoted the reaction to provide (E)-6-(4-methylphenyl)-6-
(6) There are few examples of carbometalation of dialkylacetylenes.
Carbomagnesiation: (a) Shirakawa, E.; Yamagami, T.; Kimura, T.; Yamagu-
chi, S.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 17164–17165. (b)
Murakami, K.; Ohmiya, H.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9,
1569–1571. Carboboration: (c) Suginome, M.; Shirakura, M.; Yamamoto,
A. J. Am. Chem. Soc. 2006, 128, 14438–14439. (d) Daini, M.; Suginome,
M. Chem. Commun. 2008, 5224–5226. Carbostannylation: (e) Shirakawa,
E.; Yamasaki, K.; Yoshida, H.; Hiyama, T. J. Am. Chem. Soc. 1999, 121,
10221–10222.
(1) (a) Knochel, P. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Semmelhack, M. F., Eds.; Pergamon Press: New York, 1991;
Vol. 4, Chapter 4.4, pp 865-911. (b) Marek, I.; Normant, J. In Metal-
Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.;
Wiley-VCH: New York, 1998; pp 271-337. (c) Negishi, E.; Huang, Z.;
Wang, G.; Mohan, S.; Wang, C.; Hattori, H. Acc. Chem. Res. 2008, 41,
1474–1485. (d) Flynn, A. B.; Ogilvie, W. W. Chem. ReV. 2007, 107, 4698–
4745. (e) Fallis, A. G.; Forgione, P. Tetrahedron 2001, 57, 5899–5913. (f)
Itami, K.; Yoshida, J. In The Chemistry of Organomagnesium Compounds;
Rappoport, Z., Marek, I., Eds.; John Wiley & Sons: Chichester, 2008;
Chapter 18.
(7) Recent reviews for cobalt-catalyzed reactions: (a) Yorimitsu, H.;
Oshima, K. Pure Appl. Chem. 2006, 78, 441–449. (b) Shinokubo, H.;
Oshima, K. Eur. J. Org. Chem. 2004, 2081–2091. (c) Oshima, K. Bull.
Chem. Soc. Jpn. 2008, 81, 1–24. (d) Gosmini, C.; Be´gouin, J.-M.;
Moncomble, A. Chem. Commun. 2008, 3221–3223. (e) Rudolph, A.;
Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656–2670. (f) Jeganmohan,
M.; Cheng, C.-H. Chem.-Eur. J. 2008, 14, 10876–10886. (g) Hess, W.;
Treutwein, J.; Hilt, G. Synthesis 2008, 3537–3562.
(2) (a) Shintani, R.; Yamagami, T.; Hayashi, T. Org. Lett. 2006, 8, 4799–
4801. (b) Shintani, R.; Hayashi, T. Org. Lett. 2005, 7, 2071–2073. (c) Xue,
S.; He, L.; Liu, Y.-K.; Han, K.-Z; Guo, Q.-X. Synthesis 2006, 666–674.
(3) (a) Sklute, G.; Bolm, C.; Marek, I. Org. Lett. 2007, 9, 1259–1261.
(b) Maezaki, N.; Sawamoto, H.; Yoshigami, R.; Suzuki, T.; Tanaka, T.
Org. Lett. 2003, 5, 1345–1347.
(8) Cobalt-catalyzed hydroarylation of alkynes with arylboronic acid was
reported. Most of alkynes used were propynoate esters and alkynes having
a directing group. The addition to 3-hexyne was found to afford a 1:1
mixture of stereoisomers. Lin, P.-S.; Jeganmohan, M.; Cheng, C.-H.
Chem.-Eur. J. 2008, 14, 11296–11299.
(4) (a) Stu¨demann, T.; Ibrahim-Ouali, M.; Knochel, P. Tetrahedron 1998,
54, 1299–1316. (b) Yasui, H.; Nishikawa, T.; Yorimitsu, H.; Oshima, K.
Bull. Chem. Soc. Jpn. 2006, 79, 1271–1274. The cobalt-catalyzed allylz-
incation reaction of 6-dodecyne afforded only an 18% yield of the
corresponding allylated product.
(9) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew.
Chem., Int. Ed. 2006, 45, 6040–6044.
(5) Gourdet, B.; Lam, H. W. J. Am. Chem. Soc. 2009, 131, 3802–3803.
10.1021/ol900883j CCC: $40.75
Published on Web 05/08/2009
2009 American Chemical Society