To summarize, we demonstrated herein the first example
of intramolecular azirination of enamine derivatives by using
PIDA as the oxidant. The obtained 2-aryl-2H-azirine-2-
carbonitriles could readily undergo the known thermal
rearrangement process3a-h to afford a variety of indole-3-
carbonitriles, which might be useful building blocks in the
synthesis of complex indole compounds.
Table 2. Preparation of 3-Functionalized Indoles 3 via
Thermolysis of 2-Aryl-2H-azirines (E ) CN or COOEt)a
Acknowledgment. Y. Du acknowledges the National
Natural Science Foudation of China (#20802048) and
Cultivation Foundation (B) for New Faculty of Tianjin
University (#5110109). Z. Liang thanks the National Un-
dergraduate Innovative Test Program. We also thank Miss
Xiling Zhao, University of California, San Diego, for revising
our English text.
indole 3
entry
2
R
R2
E
time (h) yield (%)b
1
2
3
4
5
6
7
8
2a H
2b 6-F
2c 6-Cl
Me
CN
3a
3b
3c
3d/3d′
3e
10
4
85
90
Me
Me
CN
CN
5
94
2d 5-Cl/7-Cl Me
CN
5
6
72/20
88
2e 6-Br
2f 6-Cl
2g 4-Me
2n H
n-Pr
CN
4-Cl-Ph CN
3f
3g
12
6
85
92
Supporting Information Available: Detailed experimen-
tal procedures and spectral data for all new compounds and
X-ray structural data of 2c and 2l. This material is available
Me
Bn
CN
COOEt 3n
6
42
a Conditions: all reactions were carried out in xylene at 140 °C under
N2. b Isolated yields after silica gel chromatography.
OL9006663
(3) (a) Taber, D. F.; Tian, W. J. Am. Chem. Soc. 2006, 126, 1058–
1059. (b) Knittel, D. Synthesis 1985, 186–187. (c) Henn, L.; Hickey,
D. M. B.; Moody, C. J.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1 1984,
2189–2196. (d) Wendling, L. A.; Bergman, R. G. J. Org. Chem. 1976, 41,
831–836. (e) Gilchrist, T. L.; Gymer, G. E.; Rees, C. W. J. Chem. Soc.,
Chem. Commun. 1971, 1519–1520. (f) Isomura, K.; Kobayashi, S.;
Taniguchi, H. Tetrahedron Lett. 1968, 9, 3499–3502. (g) Inui, H.; Murata,
S. J. Am. Chem. Soc. 2005, 127, 2628–2636. (h) Russell, G. A.; Yao, C.-
F.; Tashtoush, H. I.; Russell, J. E.; Dedolph, D. F. J. Org. Chem. 1991, 56,
663–669. (i) Chiba, S.; Hattoti, G.; Narasaka, K. Chem. Lett. 2007, 36,
52–53. (j) Alper, H.; Prickett, J. E. J. Chem. Soc., Chem. Commun. 1976,
483. (k) Isomura, K.; Uto, K.; Taniguchi, H. J. Chem. Soc., Chem. Commun.
1977, 664–665.
conditions, and future studies should be directed to the use
of metal catalysis3i-k for this conversion.
To our surprise, an exceptional result was obtained for
the thermolysis of the 2H-azirine compounds, where E was
an acetyl group. Under identical conditions, substrate 2j-l
underwent an intramolecular O-N bond formation, which
resulted in the formation of isoxazole derivatives11 (3j-l,
Table 3) in pleasant yields (80-92%),without any detection
of the desired indole compounds. Literature survey implied
that these results were consistent with previous reports on
the thermolysis of such similar azirine compounds.12
(4) Katritzky, A. R.; Wang, M.; Wilkerson, C. R.; Yang, H. J. Org.
Chem. 2003, 68, 9105–9108.
(5) Du, Y.; Liu, R.; Linn, G.; Zhao, K. Org. Lett. 2006, 8, 5919–5922.
(6) (a) Ji, Y.; Trenkle, W. C.; Vowles, J. V. Org. Lett. 2006, 8, 1161–
1164. (b) Jagtap, S. R.; Bhanushali, M. J.; Nandurkar, N. S.; Bhanage, B. M.
Synth. Commun. 2007, 37, 2253–2258.
(7) For the assignment of the E geometries, see: Treppendahl, S.;
Jakobsen, P.; Berg, C. Acta. Chem. Scand B. 1983, 37, 645–646.
(8) (a) CaH2-dried CH2Cl2, ClCH2CH2Cl, MeCN, THF, and EtOAc were
screened as solvents for azirination of 1a into 2a, the result indicated by
TLC showed that ClCH2CH2Cl was the best one. (b) Parallel experiments
using 1.1, 1.2, and 1.4 equiv of PIDA indicated that 1.2 equiv of PIDA
was optimal for the total consumption of 1a. (c) All reactions were first
studied at 0 °C to inhibit the possible formation of byproducts, for detailed
reaction temperature, see Table 1.
Table 3. Formation of Isoxazoles via Thermolysis of
2-aryl-2H-azirines (E ) acetyl group)
(9) Lee, J. H.; Choi, B. S.; Chang, J. H.; Lee, H. B.; Yoon, J.-Y.; Lee,
J. J. Org. Chem. 2007, 72, 10261–10263.
entry
2
isoxazole 3
time (h)
yield(%)b
(10) Nishiwaki, T.; Saito, T. J. Chem. Soc. (C) 1971, 2648–2651.
(11) Kidwai, M.; Sapra, P. Org. Prep. Proced. Int. 2001, 33, 381–386.
(12) (a) Lopes, S.; Nunes, C. M.; Fausto, R.; Pinho e Melo, T. M. V. D.
J. Mol. Struct. 2009, 919, 47–53. (b) Padwa, A.; Smolanoff, J.; Tremper,
A. J. Am. Chem. Soc. 1975, 97, 4682–4691. (c) Padwa, A.; Stengel, T.
Tetrahedron Lett. 2004, 45, 5991–5993. (d) Singh, B.; Ullman, E. F. J. Am.
Chem. Soc. 1967, 89, 6911–6916. (e) Pinho e Melo, T. M. V. D.; Lopes,
C. S.; J, Rocha; Gonsalves, A. M. d’A.; Storr, R. C. Synthesis 2002, 605–
608.
1
2
3
2j
2k
2l
3j (R ) H)
3k (R ) OMe)
3l (R ) NO2)
6
6
4
86
80
92
a Conditions: all reactions were carried out in xylene at 140 °C under
N2. b Isolated yields after silica gel chromatography.
2646
Org. Lett., Vol. 11, No. 12, 2009