JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
11 Ranganathan, T.; Zilberman, J.; Farris, R. J.; Coughlin, E. B.;
Emrick, T. Macromolecules 2006, 39, 5974–5975.
for both (1)/P-d and (2)/P-d systems. This result demon-
strates the good flame retardancy of the phosphinate pend-
ant. Interesting, with the same phosphorus content, (2)/P-d
copolymers show shorter burning time than (1)/P-d copoly-
mers. The phenomenon might be probably related with the
difference in microstructure and crosslinking density.
12 Ryu, B. Y.; Moon, S.; Kosif, I.; Ranganathan, T.; Farris, R. J.
Emrick, T. Polymer 2009, 50, 767–774.
13 Ryu, B. Y.; Emrick, T. Angew. Chem. Int. Ed. Engl. 2010, 49,
9644–9647.
14 Allcock, H. R.; Hartle, T. J.; Taylor, J. P.; Sunderland, N. J.
Macromolecules 2001, 34, 3896–3904.
CONCLUSIONS
15 Wang, X.; Hu, Y.; Song, L.; Xing, W.; Lu, H. D.; Lv, P.; Jie, G.
Polymer 2010, 51, 2435–2445.
We have provided an alternative approach to prepare a pro-
pargyl ether-containing benzoxazine by the nucleophilic sub-
stitution of a phenolic OH-containing precursor with propar-
gyl ether in the catalysis of potassium carbonate. Four
findings are reported in this work. First, we report the ben-
zoxazine structure is stable in an alkaline condition for
nucleophilic substitution. Second, because the amino group
is protected in a benzoxazine form, no procedure of reduc-
tion or deprotection of the amino group is required. This
approach demonstrates a facile synthesis of propargyl ether-
containing benzoxazines. To the best of our knowledge, no
propargyl ether containing-benzoxazines have been prepared
by this approach. This finding will increase the design flexi-
bility of benzoxazine-containing derivatives. Third, homopoly-
mer of (2) shows better thermal properties than homopoly-
mer of (1). In addition, (2)/P-d copolymers exhibit better
thermal properties than (1)/P-d copolymers. The data sug-
gest that the beneficial effect of crosslinking afforded by the
propargyl ether group is higher than that of the phenolic OH.
Fourth, the flame retardancy and the thermal properties of
the resulting copolymers increase simultaneously with the
content of (2). Generally, incorporating phosphorus element
usually leads to decreased thermal properties, so the result
of this work is rarely seen in the literature. These properties
make (2) attractive for industrial application, especially in
the field of copper clad laminates.
16 Liu, W. H.; Wang, Z. G.; Xiong, L.; Zhao, L. Polymer 2010,
51, 4776–4783.
17 Wang, D. Y.; Song, Y. P.; Lin, L.; Wang, X. L.; Wang, Y. Z.
Polymer 2011, 52, 233–238.
18 Bian, X. C.; Chen, L.; Wang, J. S.; Wang, Y. Z. J. Polym. Sci.
Part A: Polym. Chem. 2010, 48, 1182–1189.
19 Espinosa, L. M. D.; Meier, M. A. R.; Ronda, J. C.; Galia`, M.;
Ca´diz, V. J. Polym. Sci. Part A: Polym. Chem. 2010, 48,
1649–1660.
20 Lin, C. H.; Lin, H. T.; Sie, J. W.; Hwang, K. Y.; Tu, A. P.
J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 4555–4566.
21 Serbezeanu, D.; Vlad-Bubulac, T.; Hamciuc, C.; Aflori, M.
J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 5391–5403.
22 Negrell-Guirao, C.; David, G.; Boutevin, B.; Chougrani, K.
J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 3905–3910.
23 Tamotsu, O. (to Sumitomo Bakelite Co. Ltd.). Jpn. Pat.
106,813A, April 17, 2001.
24 Choi, S. W.; Ohba, S.; Brunovska, Z.; Hemvichian, K.; Ishida,
H. Polym. Degrad. Stab. 2006, 91, 1166–1178.
25 Lin, C. H.; Cai, S. X.; Leu, T. S.; Hwang, T. Y.; Lee, H. H.
J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 3454–3468.
26 Chang, C. W.; Lin, C. H.; Lin, H. T.; Huang, H. J.; Hwang, K.
Y.; Tu, A. P. Eur. Polym. J. 2009, 45, 680–689.
27 Lin, C. H.; Cai, S. X.; Lin, C. H. J. Polym. Sci. Part A: Polym.
Chem. 2005, 43, 5971–5986.
28 Ulrich, W.; Franck, M. WO 057,279 A1, 2002.
The authors thank the National Science Council of the Republic
of China for financial support. Partial sponsorship by the Green
Chemistry Project (NCHU), as funded by the Ministry of Educa-
tion, is also gratefully acknowledged.
29 Lin, C. H.; Lin, H. T.; Chang, S. L.; Huang, H. J.; Hu, Y. M.;
Taso, Y. R.; Su, W. C. Polymer 2009, 50, 2264–2272.
30 Sponto´ n, M.; Lligadas, G.; Ronda, J. C.; Galia`, M.; Ca´diz, V.
Polym. Degrad. Stab. 2009, 94, 1693–1699.
31 Wu, X.; Zhou, Y.; Liu, S. Z.; Guo, Y. N.; Qiu, J. J.; Liu, C. M.
Polymer 2011, 52, 1004–1012.
REFERENCES AND NOTES
32 Grenier-Loustalot, M.; Denizot, V.; Beziers, D. High Perform.
Polym. 1995, 7, 157–180.
1 Ryu, B. Y.; Emrick, T. Macromolecules 2011, 44, 5693–5700.
2 Blum, A.; Amen, B. N. Science 1977, 195, 17–23.
33 Grenier-Loustalot, M.; Sanglar, C. High Perform. Polym. 1996,
8, 315–339.
3 DeBoer, J.; Wester, P. G.; Klamer, H. J. C.; Lewis, W. E.;
Boon, J. P. Nature 1998, 394, 28–29.
34 Grenier-Loustalot, M.; Sanglar, C. High Perform. Polym. 1996,
8, 341–361.
4 Hale, R. C.; La Guardia, M. J.; Harvey, E. P.; Gaylor, M. O.;
Mainor, T. M.; Duff, W. H. Nature 2001, 412, 140–141.
35 Grenier-Loustalot, M.; Sanglar, C. High Perform. Polym. 1996,
8, 533–554.
5 Rahman, M.; Brazel, C. S. Prog. Polym. Sci. 2004, 29,
1223–1248.
36 Grenier-Loustalot, M.; Sanglar, C. High Perform. Polym. 1996,
8, 555–578.
6 Blum, A. Science 2007, 18, 194–195.
37 Douglas, W. E.; Overend, A. S. Eur. Polym. J. 1991, 27,
7 Morgan, A. B.; Tour, J. M. Macromolecules 1998, 31,
1279–1287.
2857–2865.
38 Nair, C. P. R.; Bindu, R. L.; Krishnan, K.; Ninan, K. N. Eur.
Polym. J. 1999, 35, 235–246.
8 Stephens, E. B.; Tour, J. M. Macromolecules 1993, 26,
2420–2427.
39 Prieto, S.; Galia, M.; Cadiz, V. Macromol. Chem. Phys. 1998,
199, 1291–1300.
9 Stephens, E. B.; Kinsey, K. E.; Davis, J. F.; Tour, J. M. Macro-
molecules 1993, 26, 3519–3532.
10 Ellzey, K. A.; Ranganathan, T.; Zilberman, J.; Coughlin, E. B.;
Farris, R. J.; Emrick, T. Macromolecules 2006, 39, 3553–3558.
40 Agag, T.; Takeichi, T. Macromolecules 2001, 34,
7257–7263.
1016
JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2012, 50, 1008–1017