N-Primary-Amine-Terminal ꢀ-Turn Tetrapeptides
development of research on enzyme-mediated synthesis. Now,
researchers have concentrated on two classes of peptides in the
asymmetric aldol reaction. One type is the peptide of N-terminal
proline. The application of N-prolyl peptides has indeed proven
to be a fertile ground for the development of the peptide-
catalyzed asymmetric reaction.6 Another type is the peptide of
N-terminal primary amino acids, which is more interesting
because N-terminal primary amine is the catalytic function group
in the active center of natural aldolases.2h-j In the earlier works,
however, the enantioselective results of the asymmetric aldol
reactions catalyzed by peptides bearing primary amines were
far inferior to the N-prolyl peptides, especially the reaction of
acetone with aldehydes.4c,7 This result might be attributed to
the less successful enantioselective outcomes of primary amine
organocatalysts in the asymmetric aldol reaction than that of
secondary amine organocatalysts. Recently, the research of
primary amine organocatalysts has been improved remarkably.8
It would greatly contribute to the highly efficient primary amine
peptides in the reaction. The former successful primary amine
peptides were mainly applied to the aldol reaction of cycloke-
tones and the aldol dimerization of glycoaldehyde to D-erythrose
or D-threose,9 nevertheless, they had unattractive behavior in
reactions of methyl alkyl ketones.7,10
Just as enzymes, some functional groups, which are far away
from each other in the primary structure, are close enough to
each other in the rigid space to form the active center and work
synergistically. However, only a few reports have been disclosed
that the higher structure of peptides, which are certainly essential
topics for the artificial polypeptidic enzyme mimics,11 could
contribute to high activity and enantioselectivity in this reaction.
Colonna and co-workers disclosed that PLL (polyleucine) with
secondary R-helix structure,12 which have been an excellent
catalyst for the asymmetric Julia´-Colonna epoxidation reaction
of electron-deficient ketenes,13 was an effective catalyst for the
aldol reaction of cyclohexanone with less than 76% ee as well.
The ꢀ-turn, a fundamental element of the ꢀ-hairpin, is a common
feature within proteins and enzymes, encompassing on average
25% of the residues.14 And some synthetic ꢀ-turn peptides as
effective chiral catalysts have been successfully reported in
several asymmetric catalytic reactions.15 However, there are only
two disclosed successful examples in the asymmetric aldol
reaction catalyzed by ꢀ-turn peptides to date. Wennemers’ group
suggested that a turn-like conformation of a N-prolyl tripeptide
was important for orienting the two functional groups into close
vicinity, which was crucial for efficient catalysis of acetone with
up to 91% ee.6b And it was then rechecked by Reiser and co-
workers, using aminocyclopropane carboxylic acids to stabilize
the secondary structure of their N- and C-prolyl R/ꢀ-tripeptide.16
Thus, research on high-efficiency and higher-structure peptidic
organocatalysts is greatly challenging and eagerly desired on
account of biomimetic catalysis in this reaction. It is clear that
there is no ꢀ-turn tetrapeptides with a N-terminal primary amine
group, which is also one of the key function groups in the active
center of natural aldolases, as organocatalysts have been
disclosed in this reaction to date. Hererin we report our reults
on this topic.
(4) (a) Davie, E. A. C.; Mennen, S. M.; Xu, Y.; Miller, S. J. Chem. ReV.
2007, 107, 5759. (b) Miller, S. J. Acc. Chem. Res. 2004, 37, 601. (c) Revell,
J. D.; Wennemers, H. Curr. Opin. Chem. Biol. 2007, 11, 269. (d) Kelly, D. R.;
Roberts, S. M. Biopolymers 2006, 84, 74. (e) Berkessel, A. Curr. Opin. Chem.
Biol. 2003, 7, 409. (f) Zhao, Y.; Rodrigo, J.; Hoveyda, A. H.; Snapper, M. L.
Nature 2006, 443, 67. (g) Lewis, C. A.; Miller, S. J. Angew. Chem., Int. Ed.
2006, 45, 5616. (h) Lewis, C. A.; Chiu, A.; Kubryk, M.; Balsells, J.; Pollard,
D.; Esser, C. K.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller, S. J. J. Am.
Chem. Soc. 2006, 128, 16454. (i) Mennen, S. M.; Blank, J. T.; Tran-Dube´, M. B.;
Imbriglio, J. E.; Miller, S. J. Chem. Commun. 2005, 195. (j) Delort, E.; Darbre,
T.; Reymond, J.-L. J. Am. Chem. Soc. 2004, 126, 15642. (k) Clouet, A.; Darbre,
T.; Reymond, J.-L. Angew. Chem., Int. Ed. 2004, 43, 4612. (l) Tanaka, F.; Barbas,
C. F., III J. Am. Chem. Soc. 2002, 124, 3510. (m) Krattiger, P.; McCarthy, C.;
Pfaltz, A.; Wennemers, H. Angew. Chem., Int. Ed. 2003, 42, 1722. (n) Wiesner,
M.; Ravell, J. D.; Tonazzi, S.; Wennemers, H. J. Am. Chem. Soc. 2008, 130,
5610.
(5) Kirby, A. J. Angew. Chem., Int. Ed. Engl. 1996, 35, 707.
(6) (a) Akagawa, K.; Sakamoto, S.; Kudo, K. Tetrahedron Lett. 2005, 46,
8185. (b) Krattiger, P.; Kova`sy, R.; Revell, J. D.; Ivan, S.; Wennemers, H. Org.
Lett. 2005, 7, 1101. (c) Tang, Z.; Yang, Z.-H.; Cun, L.-F.; Gong, L.-Z.; Mi,
A.-Q.; Jiang, Y.-Z. Org. Lett. 2004, 6, 2285. (d) Andreae, M. R. M.; Davis,
A. P. Tetrahedron: Asymmetry 2005, 16, 2487. (e) Revell, J. D.; Wennemers,
H. Tetrahedron 2007, 63, 8420. (f) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong,
L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. J. Am. Chem. Soc. 2003, 125, 5262.
(g) Revell, J. D.; Gantenbein, D.; Krattiger, P.; Wennemers, H. Biopolymers
2006, 84, 105. (h) Luppi, G.; Cozzi, P. G.; Monari, M.; Kaptein, B.; Broxterman,
Q. B.; Tomasini, C. J. Org. Chem. 2005, 70, 7418. (i) Tsandi, E.; Kokotos,
C. G.; Kousidou, S.; Ragoussis, V.; Kokotos, G. Tetrahedron 2009, 65, 1444.
(j) Chen, F.-B.; Huang, S.; Zhang, H.; Liu, F.-Y.; Peng, Y.-G. Tetrahedron 2008,
64, 9585. (k) Revell, J. D.; Wennemers, H. AdV. Synth. Catal. 2008, 350, 1046.
(l) Krattiger, P.; Kova`sy, R.; Revell, J. D.; Wennemers, H. QSAR Comb. Sci.
2005, 24, 1158. (m) Krattiger, P.; McCarthy, C.; Pfaltz, A.; Wennemers, H.
Angew. Chem., Int. Ed. 2003, 42, 1722. (n) Kofoed, J.; Darbre, T.; Reymond,
J. L. Org. Biomol. Chem. 2006, 4, 3268. (o) Martin, H. J.; List, B. Synlett 2003,
1901. (p) Shi, L.-X.; Sun, Q.; Ge, Z.-M.; Zhu, Y.-Q.; Cheng, T.-M.; Li, R.-T.
Synlett 2004, 2215. (q) Tang, Z.; Yang, Z. H.; Chen, X. H.; Cun, L. F.; Mi,
A. Q.; Jiang, Y. Z.; Gong, L. Z. J. Am. Chem. Soc. 2005, 127, 9285.
(7) Kofoed, J.; Nielsen, J.; Reymond, J.-L. Bioorg. Med. Chem. Lett. 2003,
13, 2445.
(9) (a) Weber, A. L.; Pizzarello, S. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
12713. (b) Co´rdova, A.; Ibrahem, I.; Casas, J.; Sunde´n, H.; Engqvist, M.; Reyes,
E. Chem.sEur. J. 2005, 11, 4772.
(10) (a) Tsogoeva, S. B.; Wei, S. Tetrahedron: Asymmetry 2005, 16, 1947.
(b) Co´rdova, A.; Zou, W.; Dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu, Y.
Chem.sEur. J. 2006, 12, 5383. (c) Zou, W.-B.; Ibrahem, I.; Dziedzic, P.; Sunde´n,
H.; Co´rdova, A. Chem. Commun. 2005, 4946. (d) Jiang, Y.-Y.; Guo, C.; Xia,
H.-S.; Mahmood, I.; Liu, H.-Z. Ind. Eng. Chem. Res. 2008, 47, 9628. (e) Dziedzic,
P.; Zou, W.; Ha´fren, J.; Co´rdova, A. Org. Biomol. Chem. 2006, 4, 38.
(11) Tanaka, F.; Fuller, R.; Barbas, C. F., III Biochemistry 2005, 44, 7583.
(12) Carrera, G.; Ottolina, G.; Lazcano, A.; Pironti, V.; Colonna, S.
Tetrahedron: Asymmetry 2007, 18, 1265.
(13) (a) Da, C.-S.; Wei, J.; Dong, S.-L.; Xin, Z.-Q.; Liu, D.-X.; Xu, Z.-Q.;
Wang, R. Synth. Commun. 2003, 33, 2787. (b) Gerlach, A.; Geller, T. AdV. Synth.
Catal. 2004, 346, 1247. (c) Julia´, S.; Manasa, J.; Vega, J. C. Angew. Chem., Int.
Ed. Engl. 1980, 19, 929. (d) Allen, J. V.; Drauz, K. H.; Flood, R. W.; Roberts,
S. M.; Skidmore, J. Tetrahedron Lett. 1999, 40, 5417. (e) Itsuno, S.; Sakakura,
M.; Ito, K. J. Org. Chem. 1990, 55, 6047.
(8) (a) Da, C.-S.; Che, L.-P.; Guo, Q.-P.; Wu, F.-C.; Ma, X.; Jia, Y.-N. J.
Org. Chem. 2009, 74, 2541. (b) Luo, S.-Z.; Xu, H.; Li, J.-Y.; Zhang, L.; Cheng,
J.-P. J. Am. Chem. Soc. 2007, 129, 3074. (c) Ramasastry, S. S. V.; Albertshofer,
K.; Utsumi, N.; Barbas, C. F., III Org. Lett. 2008, 10, 1621. (d) Xu, X.-Y.;
Wang, Y.-Z.; Gong, L.-Z. Org. Lett. 2007, 9, 4247. (e) Zhu, M.-K.; Xu, X.-Y.;
Gong, L.-Z. AdV. Synth. Catal. 2008, 350, 1390. (f) Ishihara, K.; Nakano, K.
J. Am. Chem. Soc. 2005, 127, 10504. (g) Sakakura, A.; Suzuki, K.; Nakano, K.;
Ishihara, K. Org. Lett. 2006, 8, 2229. (h) Sakakura, A.; Suzuki, K.; Ishihara, K.
AdV. Synth. Catal. 2006, 348, 2457. (i) Vogt, H.; Bra¨se, S. Org. Biomol. Chem.
2007, 5, 406. (j) Ishihara, K.; Nakano, K. J. Am. Chem. Soc. 2007, 129, 8930.
(k) Singh, R. P.; Bartelson, K.; Wang, Y.; Su, H.; Lu, X.; Deng, L. J. Am. Chem.
Soc. 2008, 130, 2422. (l) Ishihara, K.; Nakano, K.; Akakura, M. Org. Lett. 2008,
10, 2893. (m) Kano, T.; Tanaka, Y.; Osawa, K.; Yurino, T.; Maruoka, K. Chem.
Commun. 2009, 1956.
(14) (a) Wilmot, C. M.; Thornton, J. M. J. Mol. Biol. 1988, 203, 221. (b)
Smith, J. A.; Pease, L. G. CRC Crit. ReV. Biochem. 1980, 8, 315.
(15) (a) Copeland, G. T.; Jarvo, E. R.; Miller, S. J. J. Org. Chem. 1998, 63,
6784. (b) Blank, J. T.; Miller, S. J. Biopolymers 2006, 84, 38. (c) Linton, B. R.;
Reutershan, M. H.; Aderman, C. M.; Richardson, E. A.; Brownell, K. R.; Ashley,
C. W.; Evans, C. A.; Miller, S. J. Tetrahedron Lett. 2007, 48, 1993. (d) Akagawa,
K.; Akabane, H.; Sakamoto, S.; Kudo, K. Org. Lett. 2008, 10, 2035. (e)
Horstmann, T. E.; Guerin, D. J.; Miller, S. J. Angew. Chem., Int. Ed. 2000, 39,
3635. (f) Gilbertson, S. R.; Collibee, S. E.; Agarkov, A. J. Am. Chem. Soc. 2000,
122, 6522. (g) Formaggio, F.; Barazza, A.; Bertocco, A.; Toniolo, C.; Broxterman,
Q. B.; Kaptein, B.; Brasola, E.; Pengo, P.; Pasquato, L.; Scrimin, P. J. Org.
Chem. 2004, 69, 3849. (h) Greenfield, S. J.; Agarkov, A.; Gilbertson, S. R. Org.
Lett. 2003, 5, 3069.
(16) D’Elia, V.; Zwicknagl, H.; Reiser, O. J. Org. Chem. 2008, 73, 3262.
J. Org. Chem. Vol. 74, No. 13, 2009 4813