Full Papers
doi.org/10.1002/ejoc.202001671
43% yield (0.068 g) as a yellow solid after silica gel column
Conflict of Interest
chromatography (60% ethyl acetate/hexane!90% ethyl acetate/
hexane). Rf =0.27 (70% ethyl acetate/hexane).
The authors declare no conflict of interest.
1H NMR (600 MHz, DMSO) δ 9.71 (s, 1H), 8.20 (s, 1H), 7.61 (d, J=
6.0 Hz, 2H), 7.30 (t, J=6.0 Hz, 2H), 7.10 (d, J=6.0 Hz, 1H), 7.05 (t, J=
6.0 Hz, 1H), 4.01–3.95 (m, 1H), 3.87 (d, J=6.0 Hz, 2H), 1.37 (s, 9H),
1.21 (d, J=6.0 Hz, 3H).13C NMR (151 MHz, DSMO) δ 173.3, 167.7,
155.5, 138.7, 128.8, 123.4, 119.2, 78.3, 50.0, 42.8, 28.2, 17.1. HRMS
(ESI-TOF) m/z calculated for C16H23N3O4 +Na+: 344.1586 [M+Na]+;
found 344.1590.
Keywords: Acylaminoacetamides
hexamethylenetetramine (HMTA) · diketopiperazines (DKPs)
· ammonia-Ugi reaction ·
[1] B. B. Toure, D. G. Hall, Chem. Rev. 2009, 109, 4439–4486.
[2] a) A. Dömling, Chem. Rev. 2006, 106, 17–89; b) A. Dömling, W. Wang, K.
Wang, Chem. Rev. 2012, 112, 3083–3135.
Acylaminoacetamide 8h
[3] a) C. Hulme, H. Bienaymé, T. Nixey, B. Chenera, W. Jones, P. Tempest,
A. L. Smith, Methods Enzymol. 2003, 369, 469–496; b) C. Hulme, J.
Dietrich, Mol. Diversity 2009, 13, 195–207; c) A. Shahrisa, S. Esmati, R.
Miri, O. Firuzi, N. Edraki, M. Nejati, Eur. J. Med. Chem. 2013, 66, 388–399.
[4] I. Ugi, R. Meyr, U. Fetzer, C. SteinBrückner, Angew. Chem. Int. Ed. Engl.
1959, 71, 386–388.
8h was obtained from acetic acid (0.50 mmol, 0.030 g) and phenyl
isocyanide (0.50 mmol, 0.056 g), following method C, in 45% yield
(0.043 g) as a white solid after silica gel column chromatography
(80% ethyl acetate/hexane!1% methanol/ethyl acetate). Rf =0.33
(100% ethyl acetate).
[5] a) I. Ugi, F. Bodesheim, Chem. Ber. 1961, 94, 2797–2801; b) S. Gunawan,
C. Hulme, Org. Biomol. Chem. 2013, 11, 6036–6046.
[6] a) L. El Kaïm, L. Grimaud, Eur. J. Org. Chem. 2014, 7749–7762; b) L.
El Kaïm, L. Grimaud, J. Oble, Angew. Chem. Int. Ed. 2005, 44, 7961–7964;
Angew. Chem. 2005, 117, 8175–8178; c) L. El Kaïm, M. Gizolme, L.
Grimaud, J. Oble, J. Org. Chem. 2007, 72, 4169–4180.
1H NMR (600 MHz, DMSO) δ 9.94 (s, 1H), 8.19 (t, J=6.0 Hz, 1H), 7.58
(d, J=6.0 Hz, 2H), 7.30 (t, J=6.0 Hz, 2H), 7.04 (t, J=6.0 Hz, 1H), 3.86
(d, J=6.0 Hz, 2H), 1.88 (s, 3H).13C NMR (151 MHz, DSMO) δ 169.7,
167.9, 138.9, 128.7, 123.2, 119.1, 42.7, 22.4. HRMS (ESI-TOF) m/z
calculated for C10H12N2O2 +Na+: 215.0796 [M+Na]+; found
215.0791.
[7] J. Zhang, P. Yu, S.-Y Li, H. Sun, S.-H. Xiang, J. Wang, K. H. Houk, B. Tan,
Science 2018, 361, aas8707.
[8] a) A. V. Gulevich, E. S. Balenkova, V. G. Nenajdenko, J. Org. Chem. 2007,
72, 7878–7885; b) M. J. Thompson, B. Chen, J. Org. Chem. 2009, 74,
7084–7093; c) W. M. Seganish, A. Bercovici, G. D. Ho, H. J. J. Loozen,
C. M. Timmers, D. Tulshian, Tetrahedron Lett. 2012, 53, 903–905; d) J.
Isaacson, C. B. Gilley, Y. Kobayashi, J. Org. Chem. 2007, 72, 3913–3916;
e) A. Barthelon, L. El Kaïm, M. Gizzi, L. Grimaud, Synlett 2010, 18, 2784–
2788; f) P. Patil, M. Haan, K. Kurpiewska, J. Kalinowska-Tłuscik, A.
Dömling, ACS Comb. Sci. 2016, 18, 170–175; g) P. Patil, K. Kurpiewska, J.
Kalinowska-Tłuscik, A. Dömling, ACS Comb. Sci. 2017, 19, 343–350; h) L.
Moni, M. Denißen, G. Valentini, T. J. J. Müller, R. Riva, Chem. Eur. J. 2015,
21, 753–762.
[9] a) A. F. S. Barreto, C. K. Z. Andrade, Beilstein J. Org. Chem. 2019, 15, 906–
930; b) E. M. M. Abdelraheem, S. Khaksar, K. Kurpiewska, J. Kalinowska-
Tłuscik, S. Shaabani, A. Dömling, J. Org. Chem. 2018, 83, 1441–1447.
[10] a) G. A. Medeiros, W. A. da Silva, G. A. Bataglion, D. A. C. Ferreira, H. C. B.
de Oliveira, M. N. Eberlin, B. A. D. Neto, Chem. Commun. 2014, 50, 338–
340; b) C. Iacobucci, S. Reale, J.-F. Gal, F. De Angelis, Eur. J. Org. Chem.
2014, 2014, 7087–7090; c) R. O. Rocha, M. O. Rodrigues, B. A. D. Neto,
ACS Omega 2020, 5, 972–979.
General procedure for Ugi/Deprotection
+Activation/Cyclization (UDAC)
To a stirred solution of the corresponding Ugi product 8a–b
(0.15 mmol) in CH2Cl2 (2 mL), TFA (0.20 mL) was added dropwise at
°
0 C. The reaction mixture was stirred at room temperature for 24 h.
Then, it was concentrated in vacuum, CH2Cl2 (2.0 mL) was added to
the crude and the mixture was concentrated in vacuum again. This
procedure was repeated 3 times.
3-Methyl-2,5-diketopiperazine (9a)
9a was obtained from 8a (0.15 mmol, 0.050 g) in quantitative yield
(0.15 mmol, 0.019 g) as a white solid. m.p. 237–238 C (lit. m.p. 236–
°
°
238 C).
[11] G. C. Tron, Eur. J. Org. Chem. 2013, 2013, 1849–1859.
1H NMR (600 MHz, D2O) δ 4.10 (q, J=18.0 Hz, 1H), 3.90 (dd, J=12.0,
6.0 Hz, 2H), 1.48 (d, J=18.0 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ
173.6, 171.3, 49.0, 41.9, 16.2. HRMS (ESI-TOF) m/z calculated for
C5H8N2O2 +H+: 129.0664 [M+H]+; found 129.0662.
[12] a) Y. Koiso, Y. Li, S. Iwasaki, K. Hanaka, T. Kobayashi, R. Sonoda, Y. Fujita,
H. Yaegashi, Z. Sato, J. Antibiot. 1994, 47, 765–773; b) A. L. Brown, Q. I.
Churches, C. A. Hutton, J. Org. Chem. 2015, 80, 9831–9837.
[13] L. Meng, R. Mohan, B. H. B. Kwok, M. Elofsson, N. Sin, C. M. Crews, Proc.
Natl. Acad. Sci. USA 1999, 96, 10403–10408.
[14] B. Halford, Chem. Eng. News 2012, 90, 34–35.
[15] M. P. Curran, K. McKeage, Drugs 2009, 69, 859–88.
3-Hydroxymethyl-2,5-diketopiperazine (9b)
[16] a) I. Ugi, Intra-Sci. Chem. Rep. 1971, 5, 229–261; b) M. Waki, J.
Meienhofer, J. Am. Chem. Soc. 1977, 99, 6075–6082; c) G. Just, B. Y.
Chung, K. Greozinger, Can. J. Chem. 1977, 55, 274–283; d) X. Cao, E. J.
Moran, D. Siev, A. Lio, C. Ohashi, A. M. M. Mjalli, Bioorg. Med. Chem. Lett.
1995, 5, 2953–2958; e) L. Banfi, A. Basso, G. Damonte, F. De Pellegrini, A.
Galatini, G. Guanti, I. Monfardini, R. Riva, C. Scapolla, Bioorg. Med. Chem.
Lett. 2007, 17, 1341–1345; f) M. Abbas, L. A. Wessjohann, Org. Biomol.
Chem. 2012, 10, 9330–9333.
9b was obtained from 8b (0.15 mmol, 0.050 g) in quantitative yield
°
(0.015 mmol, 0.021 g) as a white solid. m.p. 211–212 C (lit. m.p.
°
211–213 C).
1H NMR (600 MHz, D2O) δ 4.14 (t, J=6,0, 1H), 3.99–3.87 (m, 4H). 13C
NMR (151 MHz, CDCl3) δ 173.5, 168.4, 60.0, 54.5, 41.9. HRMS (ESI-
TOF) m/z calculated for C5H9N2O3 +H+: 145.0613 [M+H]+; found
145.0612.
[17] a) U. Kazmaier, C. Hebach, Synlett 2003, 11, 1591–1594; b) R. Pick, M.
Bauer, U. Kazmaier, C. Hebach, Synlett 2005, 5, 757–760.
[18] C. D. Floyd, L. A. Harnett, A. Miller, S. Patel, L. Saroglou, M. Whittaker,
Synlett 1998, 6, 637–639.
[19] a) H. Kunz, W. Pfrengle, J. Am. Chem. Soc. 1988, 110, 651–652; b) K.
Sung, F.-L. Chen, P. C. Huang, Synlett 2006, 16, 2667–2669; c) T. Zhao, A.
Boltjes, E. Herdtweck, A. Dömling, Org. Lett. 2013, 15, 639–641.
[20] a) J. H. Kim, D. Bhattacharjya, J. Yu, J. Mater. Chem. A 2014, 2, 11472–
11479; b) J. M. Dreyfors, S. B. Jones, Y. Sayed, Am. Ind. Hyg. Assoc. J.
1989, 50, 579–585.
Acknowledgements
The authors thank the Instituto de Química, Universidade de
Brasília, CNPq, CAPES and FAP-DF for financial support, as well as
Prof. Peter Bakuzis and Júlia C. Andrade for helpful suggestions.
[21] C. Kamoun, A. Pizzi, Holzforsch. Holzverwert. 2000, 52, 16–19.
Eur. J. Org. Chem. 2021, 1–13
11
© 2021 Wiley-VCH GmbH
��
These are not the final page numbers!