epoxides such as glycidol and glycidyl chloride. The conver-
sion of propylene oxide into propylene carbonate is also
significant in view of the commercial importance of this
reaction. Another feature of these reactions is the complete
absence of polycarbonate formation.2,17
D. A. Dixon, K. Domen, D. L. DuBois, J. Eckert, E. Fujita,
D. H. Gibson, W. A. Goddard, D. W. Goodman, J. Keller,
G. J. Kubas, H. H. Kung, J. E. Lyons, L. E. Manzer,
T. J. Marks, K. Morokuma, K. M. Nicholas, R. Periana,
L. Que, J. Rostrup-Nielson, W. M. H. Sachtler, L. D. Schmidt,
A. Sen, G. A. Somorjai, P. C. Stair, B. R. Stults and W. Tumas,
Chem. Rev., 2001, 101, 953–996.
2 T. Sakakura, J.-C. Choi and H. Yasuda, Chem. Rev., 2007, 107,
2365–2387.
3 M. Aresta and A. Dibenedetto, Catal. Today, 2004, 98,
455–462; M. Aresta and A. Dibenedetto, Dalton Trans., 2007,
2975–2992.
4 I. Omae, Catal. Today, 2006, 115, 33–52.
5 P. G. Jessop, F. Joo and C.-C. Tai, Coord. Chem. Rev., 2004, 248,
´
2425–2442.
6 A. Baiker, Appl. Organomet. Chem., 2000, 14, 751–762.
7 J. H. Clements, Ind. Eng. Chem. Res., 2003, 42, 663–674;
M. Yoshida and M. Ihara, Chem.–Eur. J., 2004, 10, 2886–2893.
8 R. Zevenhoven, S. Eloneva and S. Teir, Catal. Today, 2006, 115,
73–79.
Catalysts 7b–d in which the structure of the salen ligand has
been simplified by removal of the tert-butyl groups and/or
cyclohexyl ring were also effective catalysts. Compared to
complex 7a however, complexes 7b–d were all slightly less
effective in the conversion of styrene oxide into styrene
carbonate in a given period of time, which in the case of
catalysts 7c,d is related to the poor solubility of these
complexes in styrene oxide.
To further demonstrate the utility of a one-component
catalyst system, immobilized versions of catalysts 7 were pre-
pared from ligands 5a,b. Thus, treatment of ligands 5a,b with
triethoxyaluminium gave bimetallic complexes 8a,bz which
reacted with bromomethylpolystyrene to give immobilized
catalysts 9a,b containing a single tetraalkylammonium salt.
Subsequent reaction of complexes 9a,b with benzyl bromide
gave tetralkylammonium salt containing catalysts 10a,b.
Cyclic carbonate synthesis using catalysts 9 and 10 required
a solvent to swell the resin beads and propylene carbonate was
found to be a suitable solvent.19 Reactions were then carried
out with styrene oxide as substrate at 26 1C under an atmo-
sphere of carbon dioxide using 2.5 mol% of catalyst.w Under
these conditions, complex 9a was found to be a recyclable
catalyst and in three consecutive reactions produced styrene
carbonate in yields of 100, 94 and 70% after reaction times of
20 hours. Although catalyst 9a contains only a single tetra-
alkylammonium bromide, its high level of catalytic activity is
consistent with the important role played by amino groups in
activating the carbon dioxide for cyclic carbonate synthesis.19
Under the same conditions, catalyst 10a gave styrene carbo-
nate yields of 79, 73, 66 and 60% over four consecutive
reactions. In contrast however, supported catalyst 9b dis-
played very low reactivity, giving just 8% conversion of
styrene oxide to styrene carbonate. The activity of this system
was however markedly improved by converting it to the
tetraammonium salt 10b, which gave styrene carbonate yields
of 79, 71, 67 and 64% in four consecutive reactions.
9 J. Sun, S.-I. Fujita and M. Arai, J. Organomet. Chem., 2005, 690,
3490–3497.
10 X.-B. Lu, X.-J. Feng and R. He, Appl. Catal., A, 2002, 234, 25–32;
X.-B. Lu, R. He and C.-X. Bai, J. Mol. Catal. A: Chem., 2002, 186,
1–11; X.-B. Lu, Y.-J. Zhang, K. Jin, L.-M. Luo and H. Wang,
J. Catal., 2004, 227, 537–541; X.-B. Lu, Y.-J. Zhang, B. Liang,
X. Li and H. Wang, J. Mol. Catal. A: Chem., 2004, 210, 31–34;
M. Alvaro, C. Baleizao, E. Carbonell, M. El Ghoul, H. Garcıa and
´
B. Gigante, Tetrahedron, 2005, 61, 12131–12139; H. Zhou,
W.-Z. Zhang, C.-H. Liu, J.-P. Qu and X.-B. Lu, J. Org. Chem.,
2008, 73, 8039–8044.
11 R. L. Paddock and S. T. Nguyen, J. Am. Chem. Soc., 2001, 123,
11498–11499; M. Alvaro, C. Baleizao, D. Das, E. Carbonell and
H. Garcıa, J. Catal., 2004, 228, 254–258; D. J. Darensbourg,
´
C. C. Fang and J. L. Rodgers, Organometallics, 2004, 23,
924–927; M. Ramin, F. Jutz, J.-D. Grunwaldt and A. Baiker,
J. Mol. Catal. A: Chem., 2005, 242, 32–39; D. J. Darensbourg,
P. Bottarelli and J. R. Andreatta, Macromolecules, 2007, 40,
7727–7729; X. Zhang, Y.-B. Jia, X.-B. Lu, B. Li, H. Wang and
L.-C. Sun, Tetrahedron Lett., 2008, 49, 6589–6592.
12 R. L. Paddock and S. T. Nguyen, Chem. Commun., 2004,
1622–1623; X.-B. Lu, J.-H. Xiu, R. He, K. Jin, L.-M. Luo and
X.-J. Feng, Appl. Catal., A, 2004, 275, 73–78; X.-B. Lu, B. Liang,
Y.-J. Zhang, Y.-Z. Tian, Y.-M. Wang, C.-X. Bai, H. Wang and
R. Zhang, J. Am. Chem. Soc., 2004, 126, 3732–3733; S.-W. Chen,
R. B. Kawthekar and G.-J. Kim, Tetrahedron Lett., 2007, 48,
297–300; T. Chang, H. Jing, L. Jin and W. Qiu, J. Mol. Catal. A:
Chem., 2007, 264, 241–247; C.-X. Miao, J.-Q. Wang, Y. Wu, Y. Du
and L.-N. He, ChemSusChem, 2008, 1, 236–241; L. Jin, Y. Huang,
H. Jing, T. Chang and P. Yan, Tetrahedron: Asymmetry, 2008, 19,
1947–1953. cobalt.
13 H. Jing, T. Chang, L. Jin, M. Wu and W. Qiu, Catal. Commun.,
2007, 8, 1630–1634.
14 H. Jing, S. K. Edulji, J. M. Gibbs, C. L. Stern, H. Zhou and
S. T. Nguyen, Inorg. Chem., 2004, 43, 4315–4327.
15 F. Jutz, J.-D. Grunwaldt and A. Baiker, J. Mol. Catal. A: Chem.,
2008, 279, 94–103.
16 A. Berkessel and M. Brandenburg, Org. Lett., 2006, 8, 4401–4404.
17 D. J. Darensbourg, R. M. Mackiewicz, A. L. Phelps and
D. R. Billodeaux, Acc. Chem. Res., 2004, 37, 836–844;
G. W. Coates and D. R. Moore, Angew. Chem., Int. Ed., 2004,
43, 6618–6639; H. Sugimoto and S. Inoue, J. Polym. Sci., Part A:
Polym. Chem., 2004, 42, 5561–5573; D. J. Darensbourg, Chem.
Rev., 2007, 107, 2388–2410; S. S. J. K. Min, J. E. Seong, S. J. Na
and B. Y. Lee, Angew. Chem., Int. Ed., 2008, 47, 7306–7309.
18 J. Melendez, M. North and R. Pasquale, Eur. J. Inorg. Chem.,
´
2007, 3323–3326.
19 M. North and R. Pasquale, Angew. Chem., Int. Ed., 2009, DOI:
10.1002/anie.200805451.
Thus, eight one-component catalysts for cyclic carbonate
synthesis have been prepared and shown to exhibit high
activity in reactions carried out at atmospheric pressure and
room temperature. Polymer-supported catalysts 9 and 10 are
the first heterogeneous catalysts to display catalytic activity
under such mild reaction conditions and open the possibility
of using these and related systems in continuous flow reactors.
The authors thank the EPSRC and CarbonConnections for
financial support.
Notes and references
z Complexes 8a,b were also active catalysts for the conversion of
styrene oxide to styrene carbonate, but only in the presence of
tetrabutylammonium bromide.
20 S. J. Angyal, P. J. Morris, J. R. Tetaz and J. G. Wilson, J. Chem.
Soc., 1950, 2141–2145; F. Minutolo, D. Pini, A. Petri and
P. Salvadori, Tetrahedron: Asymmetry, 1996, 7, 2293.
1 H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau,
E. J. Beckman, A. T. Bell, J. E. Bercaw, C. Creutz, E. Dinjus,
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 2577–2579 | 2579