10.1002/chem.201804677
Chemistry - A European Journal
FULL PAPER
New York University Abu Dhabi, P.O. Box 129188, Abu Dhab (United Arab
Emirates)
Email: pance.naumov@nyu.edu (P. N.)
[b] Dr. H. Hara
Bruker Biospin K.K., 3–9, Moriya, Kanagawa, Yokohama, Kanagawa 221-
0022 (Japan)
DHA crystal, the distance between C2′ and C7′ increased to
3.150(5) Å, and confirmed that the bond between the two atoms
was broken. The notable shift of atom C2 from its original
position is expected from the change of its geometry due to
change of hybridization (sp3 to sp2). This shift of the C2 is
related to the displacement of the two cyano groups that are
attached to this atom. Aside of this movement of the reactive
portion of the molecule, the overall molecular conformation is
retained. The torsional angle between the five-membered ring
and the phenyl ring in non-irradiated DHA is reduced only
slightly, from 23.5(2) to 20.9(5). The small overall structural
change is consistent with retention of the crystal integrity for
small conversion yields (note that further increase of the yield of
the open form in the crystal was not possible due to deterioration
after prolonged excitation). Considering that the radical
intermediate is not stable above 160 K, the product determined
by X-ray diffraction corresponds to the closed-shell form.
Acknowledgements
We thank Dr. Liang Li, New York University Abu Dhabi (NYUAD), for their help
with the XRD experiments. This research was partially carried out using the
Core Technology Platform resources at NYUAD. The computations were
carried out on the High Performance Computing resources (Dalma) at NYUAD.
Conflict of interest
The authors declare no conflicts of interest.
Keywords: photochromism • dihydroazulene • vinylheptafulvene
• solid state • crystallography
References
1
2
3
P. Bamfield, M. G. Hutchi, Chromic Phenomena: Technological
Applications of Colour Chemistry; Royal Society of Chemistry:
Cambridge, 2010
.
J. Andréasson, S. D. Straight, G. Kodis, C.-D. Park, M. Hambourger,
M. Gervaldo, B. Albinsson, T. A. Moore, A. L. Moore, D. Gust, J. Am.
Chem. Soc. 2006, 128, 16259–16265.
A. U. Petersen, M. Jevric, J. Elm, S. T. Olsen, C. G. Tortzen, A.
Kadziola, K. V. Mikkelsen, M. B. Nielsen, Org. Biomol. Chem., 2016
,
14, 2403–2412.
4
5
6
7
C.-C. Ko, V. W.-W. Yam, Acc. Chem. Res. 2018, 51, 149–159.
J. Zhang, Q. Zou, H. Tian, Adv. Mater. 2013, 25, 378–399.
M. Irie, Chem. Rev., 2000, 100, 1685–1716.
S.-Z. Pu, Q. Sun, C.-B. Fan, R.-J. Wang, G. Liu, J. Mater. Chem. C.
2016, 4 (15), 3075–3093.
Y. Yokoyama, Chem. Rev., 2000, 100, 1717–1740.
J. Harada, Y. Kawazoe, K. Ogawa, Chem. Commun. 2010, 46, 2593–
2595.
Fig. 7 X-ray photodiffraction analysis of DHA crystal that was partially
converted to the open form by two-photon excitation. (a) ORTEP diagram of
DHA in the crystal before irradiation. (b) ORTEP diagram of two-photon
irradiated crystal with approximately 3.1% population of VHF, the open form of
DHA. (c) Difference electron density Fourier map around the cyanide group in
a non-irradiated crystal of DHA. (d) Difference electron density map in an
irradiated crystal where the structure was refined as DHA. The orange-colored
splotches around the cyanide group correspond to residual density from the
product, VHF. The anisotropic ORTEP ellipsoids in panels a and c are shown
at 50% probablity level and in panels b and d they are shown at 30%
probability level.
8
9
10 S. M. Aldoshin, L. A. Nikonova, V. A. Smirnov, G. V. Shilov, N. K.
Nagaeva, J. Mol. Struct., 2005, 750, 158–165.
11 S. Bénard, P. Yu, Adv. Mater. 2000, 12, 48–50.
12 S. Bénard, P. Yu, Chem. Commun. 2000, 65–66.
13 S. M. Aldoshin, L. A. Nikonova, G. V. Shilov, E. A. Bikanina, N. K.
Artemova, V. A. Smirnov, J. Mol. Struct., 2006, 794, 103–109.
14 P. Naumov, P. Yu, K. Sakurai, J. Phys. Chem. A, 2008, 112, 5810–
5814.
15 S. Helmy, F. A. Leibfarth, S. Oh, J. E. Poelma, C. J. Hawker, J. R. de
Alaniz, J. Am. Chem. Soc., 2014, 136, 8169–8172.
16 J. R. Hemmer, S. O. Poelma, N. Treat, Z. A. Page, N. D. Dolinski, Y.
J. Diaz, W. Tomlinson, K. D. Clark, J. P. Hooper, C. Hawker, J. R. de
Alaniz, J. Am. Chem. Soc., 2016, 138, 13960–13966.
17 J. Daub, S. Gierisch, U. Klement, T. Knöchel, G. Maas, U. Seitz, Eur.
J. Inorg. Chem., 1986, 119, 2631–2646.
18 J. Daub, T. Knöchel, A. Mannschreck, Angew. Chem. Int. Ed. Engl.,
1984, 23, 960–961.
19 S. Gierisch, W. Bauer, T. Burgemeister, J. Daub, Eur. J. Inorg. Chem.,
1989, 122, 2341–2349.
In summary, we demonstrated that the DHA‒VHF photoswitch
undergoes a photochromic reaction from DHA to VHF in the
solid state. We provided spectroscopic and diffraction evidence
that the reaction results in the ring-opened form, syn‒VHF, and
it occurs with minimal atomic motion. In addition to the closed-
shell pathway, the reaction also proceeds via a homolytic bond
cleavage forming
a metastable diradical species that is
persistent below 160 K, but rapidly returns to DHA upon
warming. This was additionally confirmed using a DFT-based
mechanistic study on the DHA converting to syn‒VHF via an
open shell intermediate. We infer that the UV excitation induces
electronic changes in the system, but does not cause a
significant structural change, allowing the DHA‒VHF
photochromic switch to maintain its crystallinity and operate
within a very similar unit cell. Photodiffraction analysis of a
crystal enriched with the product by using two-photon excitation
provided the first direct evidence that the main product in the
crystal has a vinylheptafulvene structure.
20 O. Schalk, S. L. Broman, M. Å. Petersen, D. V. Khakhulin, R. Y.
Brogaard, M. B. Nielsen, A. E. Boguslavskiy, A. Stolow, T. I. Sølling, J.
Phys. Chem. A, 2013, 117, 3340–3347.
21 R. U. Nisa, N. Shahzad, K. Ayub, Comp. Theor. Chem, 2016, 1095,
1–8.
22 N. Shahzad, R. U. Nisa, K. Ayub, Struct. Chem., 2013, 24, 2115–
2126.
23 M. Cacciarini, S. L. Broman, M. B. Nielsen, ARKIVOC 2014, 249–263.
24 S. L. Broman, M. Jevric, A. D. Bond, M. B. Nielsen, J. Org. Chem.,
2014, 79, 41–64.
25 A. B. Skov, S. L. Broman, A. S. Gertsen, J. Elm, M. Jevric, M.
Cacciarini, A. Kadziola, K. V. Mikkelsen, M. B. Nielsen, Chem. Eur. J.,
2016, 22, 14567–14575.
26 M. Cacciarini, A. B. Skov, M. Jevric, A. S. Hansen, J. Elm, H. G.
Kjaergaard, K. V. Mikkelsen, M. B. Nielsen, Chem. Eur. J., 2015, 21,
7454–7461.
Authors and correspondence
[a] Ms. I. Liepuoniute, Dr. P. Commins, Dr. D. P. Karothu, Dr. S. Schramm,
Prof. P. Naumov
This article is protected by copyright. All rights reserved.