metal coordination. Each of these factors affect step-wise self-
assembly into similar arrays and related research is currently
in progress.
This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada. We
thank the Mass Spectroscopy lab of the Department of
Chemistry, University of British Columbia.
Notes and references
z Crystal data for 7: C26H21BN4F2, M = 438.28, monoclinic, a =
6.2217(8), b = 30.104(4), c = 11.954(2) A, b = 96.072(9)1, V =
2226.4(6) A3, T = 298 K, space group C2/c (no. 15), Z = 4, 11 946
reflections measured, 2611 unique (Rint = 0.037). R1 = 0.044(I 4
Scheme 5
2.00s(I)), wR2
C52H40B2N8F4Cuꢁ2CH2Cl2,
=
0.122(all data). Crystal data for 10:
M
=
1107.93, orthorhombic, a =
22.128(5), b = 8.569(2), c = 27.299(6) A, V = 5176(2) A3, T =
173 K, space group Pbcn (no. 60), Z = 4, 14 088 reflections measured,
3365 unique (Rint = 0.122). R1 = 0.054(I 4 2.00s(I)), wR2 =
0.136(all data). Crystal data for 11: C56H48B2N8F4Cuꢁ2CH2Cl2,
M = 1164.04, monoclinic, a = 18.142(2), b = 20.146(3), c =
15.483(3) A, b = 90.191(7)1, V = 5659(2) A3, T = 173 K, space
group P21/c (no. 14), Z = 4, 32 007 reflections measured, 7184 unique
(Rint = 0.130). R1 = 0.070(I 4 2.00s(I)), wR2 = 0.209(all data).
Crystal data for 12: C52H40B2N8F4Niꢁ2CH2Cl2, M = 1103.10, ortho-
rhombic, a = 22.249(2), b = 8.5705(7), c = 27.197(2) A, V =
5186.1(7) A3, T = 173 K, space group Pbcn (no. 60), Z = 4, 15 765
reflections measured, 3328 unique (Rint
=
0.083). R1
=
0.072(I 42.00s(I)), wR2 = 0.121(all data). Crystal data for 13:
C56H48B2N8F4Niꢁ2CHCl3, M = 1228.09, triclinic, a = 10.840(1),
b = 14.501(2), c = 19.830(2) A, a = 109.761(6)1, b = 104.839(6)1,
3
ꢀ
g = 93.027(6)1, V = 2802.2(5) A , T = 173 K, space group P1 (no. 2),
Z = 2, 30 194 reflections measured, 9772 unique (Rint = 0.045). R1 =
0.075(I 4 2.00s(I)), wR2 = 0.230(all data). Crystal data for 14:
C56H48B2N8F4Coꢁ2CH2Cl2, M = 1159.43, triclinic, a = 10.669(1),
b = 14.432(2), c = 19.145(2) A, a = 70.375(4)1, b = 78.215(4)1, g =
86.892(4)1, V = 2717.8(5) A , T = 173 K, space group P1 (no. 2), Z =
2, 58 453 reflections measured, 10 121 unique (Rint = 0.062). R1 =
0.061(I 4 2.00s(I)), wR2 = 0.169(all data). Crystal data for 15:
Fig. 5 Optical spectra of ligand 9 and complexes 14, 16 and 17 in
CH2Cl2.
3
ꢀ
groups results in bathochromic shifts and Motekaitis–Martell
MO theory allows for the calculation of dihedral angles for
metal complexes.
C56H48B2N8F4Znꢁ2CH2Cl2,
M
=
1165.87, triclinic,
a
=
In this study we have prepared two sets of reference
compounds (20 and 21, and 22–33, Scheme 5) to provide the
electronic spectra of individual metal-dipyrrins and boron-
dipyrrins. For the same metal, an increase in the inter-ligand
dihedral angles results in a bathochromic shift (compare 22,
23; 28, 29; 24, 25 and 30, 31, see ESIw). The bathochromic shift
also occurs with a cyano group on the meso-aryl instead of a
methyl group. This is particularly obvious in NiII complexes
where the distorted square-planar structures exhibit a large
bathochromic shift (14 nm, compare 24 with 30). By contrast,
the two distorted tetrahedral NiII complexes of a-methyl
dipyrromethenes (compare 25 with 31) show only a relatively
small bathochromic shift (2 nm).
10.7063(11), b = 14.4785(12), c = 19.1263(18) A, a = 70.425(4)1,
b = 78.184(4)1, g = 86.994(4)1, V = 6037(3) A3, T = 173 K, space
ꢀ
group P1 (no. 2), Z = 2, 21 133 reflections measured, 18 068 unique
(Rint = 0.046). R1 = 0.066(I 4 2.00s(I)), wR2 = 0.175(all data).
Crystal data for 16: C84H72B2N12F4Co2ꢁ2CHCl3, M = 1703.75,
monoclinic, a = 13.4104(15), b = 26.078(2), c = 12.7437(14) A,
b = 115.666(5)1, V = 4017.0(7) A3, T = 173 K, space group P21/c
(no. 14), Z = 2, 30 263 reflections measured, 7078 unique (Rint
=
0.054). R1 = 0.059(I 4 2.00s(I)), wR2 = 0.173(all data). CCDC
684023–684029 and 709603. For crystallographic data in CIF or other
electronic format, see DOI: 10.1039/b820461f
1 J. M. Tour, Acc. Chem. Res., 2000, 33, 791–804.
2 N. Aratani, H. S. Cho, T. K. Ahn, S. Cho, D. Kim, H. Sumi and
A. Osuka, J. Am. Chem. Soc., 2003, 125, 9668–9681.
3 J. M. Tour, A. M. Rawlett, M. Kozaki, Y. Yao, R. C. Jagessar,
S. M. Dirk, D. W. Price, M. A. Reed, C.-W. Zhou, J. Chen,
W. Wang and I. Campbell, Chem.–Eur. J., 2001, 7, 5118–5134.
4 T. E. Wood and A. Thompson, Chem. Rev., 2007, 107, 1831–1861.
5 R. W. Wagner and J. S. Lindsey, J. Am. Chem. Soc., 1994, 116,
9759–9760.
6 M. Koepf, A. Trabolsi, M. Elhabiri, J. A. Wytko, D. Paul,
A. M. Albrecht-Gary and J. Weiss, Org. Lett., 2005, 7, 1279–1282.
7 H. Maeda, M. Hasegawa, T. Hashimoto, T. Kakimoto, S. Nishio
and T. Nakanishi, J. Am. Chem. Soc., 2006, 128, 10024–10025.
8 M. Wada, S. Ito, H. Uno, T. Murashima, N. Ono, T. Urano and
Y. Urano, Tetrahedron Lett., 2001, 42, 6711–6713.
The strongest UV-Vis absorption of ligand 9, in CH2Cl2,
exhibits a sharp band at 514 nm as a result of boron com-
plexation, but this band remains only as a shoulder upon
metallation (Fig. 5). The electronic absorption spectra of
complexes 14, 16 and 17 show a hypsochromic shift with
increasing length and increasing number of metal ions.
The optical spectra of all the metal complexes 10–17
approximate the sum of the individual boron-dipyrrins and
metal-dipyrrins, which suggests a minimal overlap between the
p-systems (see ESIw).
9 W. Qin, M. Baruah, M. Van der Auweraer, F. C. De Schryver and
N. Boens, J. Phys. Chem. A, 2005, 109, 7371–7384.
10 G. B. Guseva, E. V. Antina, M. B. Berezin and A. I. V’yugin, Russ.
J. Gen. Chem., 2004, 74, 1282–1285.
Dipyrrins allow for great flexibility in the constitution and
conformation of the linking groups (and their substitution
patterns), peripheral constituents, terminal substituents and
11 C. Bruckner, V. Karunaratne, S. J. Rettig and D. Dolphin, Can. J.
¨
Chem., 1996, 74, 2182–2193.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 2541–2543 | 2543