3
R.; Figadère, B. Bioorg. Med. Chem. Lett. 2003, 13, 891. (f) Fakhfakh, M.
Compared
with
aromatic
aldehydes
and
2-
A.; Fournet, A.; Prina, E.; Mouscadet, J. F.; Franck, X.; Hocquemiller, R.;
Figadère, B. Bioorg. Med. Chem. 2003, 11, 5013. (g) Chang, F. S.; Chen,
W. C.; Wang, C. H.; Tzeng, C. C.; Chen, Y. L. Bioorg. Med. Chem. 2010,
18, 124. (h) Merschaert, A.; Boquel, P.; Van Hoeck, J. P.; Gorissen, H.;
Borghese, A.; Bonnier, B.; Mockel, A.; Napora, F. Org. Process Res. Dev.
2006, 10, 776. (i) Zwaagstra, M. E.; Schoenmakers, S. H. H. F.;
Nederkoorn, P. H. J.; Gelens, E.; Timmerman, H.; Zhang, M. Q. J. Med.
Chem. 1998, 41, 1439.
6. (a) Best, D.; Lam, H. W. J. Org. Chem. 2014, 79, 831. (b) Carey, J. S.;
Laffan, L.; Thompson, C.; Williams, M. T. Org. Biomol. Chem. 2006, 4,
2337. (c) Dugger, R. W.; Ragan, J. A.; Ripin, H. B. D. Org. Process Res.
Dev. 2005, 9, 253. (d) Buffat, M. G. P. Tetrahedron. 2004, 60, 1701. (d)
Felpin, F.-X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693.
7. For selected examples, see: (a) Mousseau, J. J.; Bull, J. A.; Charette, A. B.
Angew. Chem. Int. Ed. 2010, 49, 1115. (b) Wu, J.; Cui, X.; Chen, L.; Jiang,
G.; Wu, Y. J. Am. Chem. Soc. 2009, 131, 13888. (c) Cho, S. H.; Hwang, S.
J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254. (d) Nakao, Y.; Kanyiva,
K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448. (e) Kanyiva, K. S.;
Nakao, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2007, 46, 8872. (f)
Murakami, M.; Hori, S. J. Am. Chem. Soc. 2003, 125, 4720. (g) Kim, M.;
Kwak, J.; Chang, S.; Angew. Chem. Int. Ed. 2009, 48, 8935.
8. For selected examples for C(sp3)–H functionalization of 2-alkylazaarenes,
see: (a) Qian, B.; Guo, S.; Shao, J.; Zhu, Q.; Yang, L.; Xia, C.; Huang, H. J.
Am. Chem. Soc. 2010, 132, 3650. (b) Niwa, T.; Yorimitsu, H.; Oshima, K.
Angew. Chem. Int. Ed. 2007, 46, 2643. Angew. Chem. 2007, 119, 2697. (c)
Liu, J.-Y.; Niu, H.-Y.; Wu, S.; Qu, G.-R.; Guo, H.-M. Chem. Commun.
2012, 48, 9723. (d) Song, G.; Su, Y.; Gong, X.; Han, K.; Li, X. Org. Lett.
2011, 13, 1968. (e) Qian, B.; Guo, S. M.; Xia, C. G.; Huang, H. M. Adv.
Synth. Catal. 2010, 352, 3195. (f) Qian, B.; Shi, D. J.; Yang, L.; Huang, H.
M. Adv. Synth. Catal. 2012, 354, 2146. (g) Zhang, L.; Peng, C.; Zhao, D.;
Wang, Y.; Fu, H. J.; Shen, Q.; Li, J. X. Chem. Commun. 2012, 48, 5928. (h)
Rueping, M.; Tolstoluzhsky, Org. Lett. 2011, 13, 1095. (i) Niu, R.; Yang,
S.; Xiao, J.; Liang, T.; Li, N.; X. Chin. J. Catal. 2012, 33, 1636. (j) Wang,
X.; Li, S. Y.; Pan,Y. M.; Wang, H. S.; Liang, H.; Chen, Z. F.; Qin, X. H.
Org. Lett. 2014, 16, 580. (k) Gao, X.; Zhang, F.; Deng, G.; Yang, L. Org.
Lett. 2014, 16, 3664. (l) Wang, F.-F.; Luo, C.-P.; Deng, G.; Yang, L. Green
Chem. 2014, 16, 2428. (m) Yaragorla, S.; Singh, G.; Dada, R. Tetrahedron
Letters, 2015, 56(43):5924-5929. (n) Liu, S.-S.; Jiang, K.; Pi, D.-W.; Zhou,
H.-F.; Uozumi, Y.; Zou, K. YoujiHuaxue, 2014, 34, 1369-1375.
methylquinoxaline, aliphatic aldehydes and 2-methylquinoline
were less-than-ideal substrates, with which only moderate yields
could be achieved (3a-3d). In addition to the desired products,
much of the substrates remained intact. Meanwhile, trace side
products were indeed observed. Subsequently, a multitude of
diverse 2-methylquinolines and aromatic aldehydes were tested.
Electron-deficient or electron-rich aromatic aldehydes were well
tolerated to furnish the analogous products in good yield (3g-3z).
When aromatic aldehydes were substituted with electron-rich
groups such as methoxyl group (3n), the yields were superior to
those of electron-poor aldehydes such as fluorine (3h) and nitro-
group substituted ones (3l). 1-Methylisoquinoline and the
quinoxaline ring were also good substrates for this reaction,
furnishing the desired product in good yields (3r-3y). In addition
to phenyl aldehydes, furanyl aldehyde also worked very well
(3z). At last, formaldehyde, acetophenone, and cyclohexanone
were subjected to the reaction under the standard condition,
aiming to access 2-vinylquinoline, trisubstituted alkenes or
tertiary alcohols, whereas no transformation could be observed
and all the reactants remained intact.
Conclusions
In summary, we have developed a facile catalyst-free protocol to
synthesize (E)-2-alkenylquinolines “on water”. The challenging
addition/dehydration of aliphatic aldehyde was successfully
implemented by using water as a solvent. Compared with the
traditional methods, the advantages of using water as solvent and
only water as side product render this methodology atom-
economic and environmentally friendly to access (E)-2-
alkenylquinoline derivatives, which can be further employed as
synthetic precursors to build an army of functionalized
heterocycles. Further development of green methods for C(sp3)-H
functionalization of azaarenes “on water” are ongoing in our
laboratory.
9. (a) Qian, B.; Xie, P.; Xie, Y.; Huang, H. M. Org. Lett. 2011, 13, 2580. (b)
Pi, D.; Jiang, K.; Zhou, H.; Sui, Y.; Uozumi Y.; Zou, K. RSC Adv. 2014, 4,
57875.
10. Yan, Y.; Xu, K.; Fang, Y.; Wang, Z. J. Org. Chem. 2011, 76, 6849.
11. (a) Li, Y.; Guo, F.; Zha, Z.; Wang, Z. Chem. Asian J. 2013, 8, 534. (b)
Zhang, Y.; Xu, J.; Li, X.; Tian, S. Eur. J. Org. Chem. 2013, 3648. (c) Xu,
L.; Shao, Z.; Wang, L.; Zhao H.; Xiao, J. Tetrahedron Lett. 2014, 55, 6856.
(d) Mao, D.; Hong, G.; Wu, S.; Liu, X.; Yu, J.; Wang, L. Eur. J. Org.
Chem. 2014, 3009.
Acknowledgments
12. (a) Niu, R.; Xiao, J.; Liang, T.; Li, X. Org. Lett .2012, 14, 676. (b) Xu, L.;
Shao, Z.; Wang, L.; Xiao, J. Org. Lett. 2014, 16, 796. (c) Shao, Z.; Wang,
L.; Xu, L.; Zhao, H.; Xiao, J. RSC Adv. 2014, 4, 53188. (d) Shao, Z.; Xu,
L.; Wang, L.; Wei, H.; Xiao, J. Org. Biomol. Chem. 2014, 12, 2185. (e)
Wang, L.; Xiao, J.; Loh, T.-P. ChemChatChem. 2014, 6, 1183. (f) Xiao,
J.; Chen, Y.; Zhu, S.; Wang, L.; Xu, L.; Wei, H. Adv. Synth. Catal. 2014,
356, 1835. (g) Xiao, J. Org. Lett. 2012, 14, 1716. (h) Liang, T.; Xiao, J.;
Xiong, Z. Y.; Li, X. J. Org. Chem. 2012, 77, 3583. (i) Xiao, J.; Zhao, K.;
Loh, T.-P. Chem. Comm. 2012, 48, 3548. (j) Huang, F.; Xu, B.; Xiao, J.
Chin. J. Chem. 2012, 30, 2721. (k) Wen, H.; Wang, L.; Xu, L.; Hao, Z.;
Shao, C.-L.; Wang C.-Y.; Xiao, J. Adv. Synth. Catal. 2015, 357, 4023.
13. Xiao, J.; Wen, H.; Wang, L.; Xu, L.; Hao, Z.; Shao, C.-L.; Wang, C.-Y.
Green Chem. 2015, 18, 1032.
We are grateful to the National Natural Science Foundation of
China (Nos. 21102142). Financial supports from Talents of High
Level Scientific Research Foundation (Nos. 6631112323,
6631115015) of Qingdao Agricultural University and Open
Project Program of Hubei Key Laboratory of Drug Synthesis and
Optimization, Jingchu University of Technology (Nos.
OPP2015YB01 and OPP2015ZD02) are also appreciated.
References and notes
1. Breslow, R. Acc. Chem. Res. 1991, 24, 159.
2. Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.;
Sharpless, K. B. Angew. Chem., Int. Ed. 2005, 44, 3275.
3. (a) Bandini, M.; Tragni, M. Org. Biomol. Chem. 2009, 7, 1501. (b)
Rueping, M.; Nachtsheim, B. J. Beilstein J. Org. Chem. 2010, 6. (c) Kumar,
R.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 1121.
4. (a) Domling, A.; Chem. Rev. 2006, 106, 17. (b) Raman, D. J.; Yus, M.
Angew. Chem., Int. Ed. 2005, 44, 1602.
5. (a) Zamboni, R.; Belley, M.; Champion, E.; Charette, L.; DeHaven, R.;
Frenette, R.; Gauthier, J. Y.; Jones, T. R.; Leger, S. J. Med. Chem. 1992,
35, 3832. (b) Nakayama, H.; Loiseau, P. M.; Bories, C.; Torres de Ortiz,
S.; Schinini, A.; Serna, E.; Rojas de Arias, A.; Fakhfakh, M. A.; Franck,
X.; Figadère, B.; Hocquemiller, R.; Fournet, A. Antimicrob. Agents
Chemother. 2005, 49, 4950. (c) Mekouar, K.; Mouscadet, J. F.; Desmaële,
D.; Subra, F.; Leh, H.; Savouré, D.; Auclair, C.; d'Angelo, J. J. Med. Chem.
1998, 41, 2846. (d) Franck, X.; Fournet, A.; Prina, E.; Mahieux, R.;
Hocquemiller, R.; Figadère, B. Bioorg. Med. Chem. Lett. 2004, 14, 3635.
(e) Fournet, A.; Mahieux, R.; Fakhfakh, M. A.; Franck, X.; Hocquemiller,