10.1002/adsc.201900427
Advanced Synthesis & Catalysis
reaction mechanism is proposed as outlined in
Wencel-Delord, F. Glorius, Angew. Chem., Int. Ed.
2012, 51, 10236–10254; Angew. Chem. 2012, 124,
10382–10401; e) C. S. Yeung, V. M. Dong, Chem. Rev.
2011, 111, 1215–1292; f) L. McMurray, F. O’Hara, M.
J. Gaunt, Chem. Soc. Rev. 2011, 40, 1885–1898; g) S.
H. Cho, J. Y. Kim, J. Kwak, S. Chang, Chem. Soc. Rev.
2011, 40, 5068–5083; h) I. A. I. Mkhalid, J. H. Barnard,
T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev.
2010, 110, 890–931; i) T. Satoh, M. Miura, Chem. -Eur.
J. 2010, 16, 11212–11222.
Scheme
3.
Initially,
the
active
catalyst
Cp*Rh(AdCOO)2 A is generated through ligand
exchange between [Cp*RhCl2]2 and AdCOOK, which
underwent coordination with 1a and C-H metallation
process to form rhodacycle complex B with the loss
of AdCOOH. The H/D exchange experiment revealed
that the activation process is reversible (Scheme 2, eq
1). Then, the coordination of complex B and
nitroalkene gave a rhodium species C, which
occurred the migratory insertion into the nitroalkene
to afford intermediate D, followed by protonation
process, leading to alkylated product E. Subsequently,
the intramolecular ester condensation of E generated
the intermediate F, which eventually isomerized to
the thermodynamically more stable product 3a.
[2] For selected reviews: a) D. A. Colby, A. S. Tsai, R. G.
Bergman, J. A. Ellman, Acc. Chem. Res. 2012, 45,
814–825; b) P. B. Arockiam, C. Bruneau, P. H.
Dixneuf, Chem. Rev. 2012, 112, 5879–5918; c) Y.
Yang, J. Lan, J. You, Chem. Rev. 2017, 117, 8787–
8863; d) Y. Hu, B. Zhou, C. Wang, Acc. Chem.
Res. 2018, 51, 816–827.
In summary, we have developed a mild and
powerful approach for the assembly of structurally
diverse indenes scaffolds via rhodium(III)-catalyzed
C-H activation and annulation reaction from readily
available benzimidates and nitroalkenes. The
transformation showed broad substrate scope and
good functional group compatibility under mild
conditions. The reaction could be easily scaled up to
gram scale. This methodology may offer an efficient
tool for the synthesis of biologically or
pharmaceutically useful molecules. Further studies on
the synthesis of other valuable cyclic compounds via
C-H activation are underway.
[3] Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu, Y. Zhang,
Org. Chem. Front. 2015, 2, 1107–1295.
[4] a) K. Ueura, T. Satoh, M. Miura, Org. Lett. 2007, 9,
1407–1409; b) Q. Lu, S. Gressies, S. Cembellin, F. J. R.
Klauck, C. G. Daniliuc, F. Glorius, Angew. Chem., Int.
Ed. 2017, 56, 12778–12782; Angew. Chem. 2017, 129,
12954–12958; c) A. Mandal, H. Sahoo, S. Dana, M.
Baidya, Org. Lett. 2017, 19, 4138–4141; d) C. Kuai, L.
Wang, B. Li, Z. Yang, X. Cui, Org. Lett. 2017, 19,
2102–2105; e) F. Xie, S. Yu, Z. Qi, X. Li, Angew.
Chem., Int. Ed. 2016, 55, 15351–15355; Angew. Chem.
2016, 128, 15577–15581; f) B. Li, H. Xu, H. Wang, B.
Wang, ACS Catal. 2016, 6, 3856–3862; g) L. Li, W. W.
Brennessel, W. D. Jones, J. Am. Chem. Soc. 2008, 130,
12414–12419; h) N. Guimond, C. Gouliaras, K. Fagnou,
J. Am. Chem. Soc. 2010, 132, 6908–6909; i) F. W.
Patureau, T. Besset, N. Kuhl, F. Glorius, J. Am. Chem.
Soc. 2011, 133, 2154–2156; j) K. Muralirajan, K.
Parthasarathy, C.-H. Cheng, Angew. Chem. Int. Ed.
2011, 50, 4169–4172; Angew. Chem. 2011, 123, 4255–
4258; k) B.-J. Li, H.-Y. Wang, Q.-L. Zhu, Z.-J. Shi,
Angew. Chem.,Int. Ed. 2012, 51, 3948–3952; Angew.
Chem. 2012, 124, 4014–4018; l) J. H. Kim, T. Gensch,
D. Zhao, L. Stegemann, C. A. Strassert, F. Glorius,
Angew. Chem. Int. Ed. 2015, 54, 10975–10979; Angew.
Chem. 2015, 127, 11126–11130.
Experimental Section
General procedure for
difunctionalized indenes
the synthesis of
To a test tube with a stir bar was added benzimidates (1,
0.20 mmol), nitroalkenes (2, 0.30 mmol), [Cp*RhCl2]2
(0.01 mmol, 6.0 mg), AdCOOK (0.1 mmol, 21.8 mg) in
TFE (2.0 mL) was stirred at 80 °C for 16 h, cooled to room
temperature, filtered through a pad of celite, and then
washed with CH2Cl2 (10 mL × 3). Organic solvents were
removed under reduced pressure and the crude reaction
mixture was purified by column chromatography on silica
gel column with EtOAc/petroleum ether (1:5~1:2, v/v) as
an eluent to afford the desired product 3 or 4.
[5] For a recent review and representative examples, see:
a) D.-S. Kim, W.-J. Park, C.-H. Jun, Chem. Rev. 2017,
117, 8977–9015; b) P. Gandeepan, L. Ackermann,
Chem. 2018, 4, 199–222; c) S. S. John-Campbell, J. A.
Bull, Org. Biomol. Chem. 2018, 16, 4582–4595; d) C.-
H. Jun, H. Lee, J.-B. Hong, J. Org. Chem. 1997, 62,
1200–1201; e) R. B. Bedford, S. J. Coles, M. B.
Hursthouse, M. E. Limmert, Angew. Chem. Int. Ed.
2003, 42, 112–114; Angew. Chem. 2003, 115, 116–118;
f) F. Mo, G. Dong, Science. 2014, 345, 68–72; g) F.-L.
Zhang, K. Hong, T.-J. Li, H. Park, J.-Q. Yu, Science.
2016, 351, 252–256; h) Y. Xu, T. Su, Z. Huang, G.
Dong, Angew. Chem. Int. Ed. 2016, 55, 2559–2563;
Angew. Chem. 2016, 128, 2605–2609; i) Y. Liu, H. Ge,
Nat. Chem. 2017, 9, 26–32; j) K. Yang, Q. Li, Y. Liu,
G. Li, H. Ge, J. Am. Chem. Soc. 2016, 138, 12775–
12778; k) Q.–J. Yao, S. Zhang, B.–B. Zhan, B.–F. Shi,
Angew. Chem. Int. Ed. 2017, 56, 6617–6621; Angew.
Chem. 2017, 129, 6717–6721.
Acknowledgements
Funding from Natural Science Foundation of China (Nos.
21472165, 21672186, 21602202) and Important Project of
Zhejiang province (2017C03049) is highly acknowledged
References
[1] For selected reviews: a) L. Ackermann, Acc. Chem.
Res. 2014, 47, 281–295; b) S. R. Neufeldt, M. S.
Sanford, Acc. Chem. Res. 2012, 45, 936–946; c) K. M.
Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res.
2012, 45, 788–802; d) N. Kuhl, M. N. Hopkinson, J.
4
This article is protected by copyright. All rights reserved.