T. Takeda et al. / Tetrahedron Letters 50 (2009) 3693–3697
3697
14. Morita, Y.; Suzuki, S.; Fukui, K.; Nakazawa, S.; Kitagawa, H.; Kishida, H.;
Okamoto, H.; Naito, A.; Sekine, A.; Ohashi, Y.; Shiro, M.; Sasaki, K.; Shiomi, D.;
Sato, K.; Takui, T.; Nakasuji, K. Nat. Mater. 2008, 7, 48–51.
15. Variable temperature X-ray analysis of acr-1 was previously carried out for the
temperature range between 93 K and 233 K. (Ref. 8b). Those measurements
revealed that the phase transition actually occurred at 233 K, whereby four
crystallographically independent molecules at lower temperatures are merged
into two crystallographically independent molecules. No further phase
transition occurred at higher temperature up to 413 K.
16. Crystal data and details on crystallographic studies of 1a–e/2a,b,d,e (at 113/
123/153 K) were given in Supplementary data.
17. In another crystallographically independent molecule, the C1–C2 bond length is
1.719(3) Å; whose expansion degree (0.012 Å) over 320° is similar to the one
with the ultralong C–C bond.
18. Li, X.; Paldus, J. J. Chem. Phys. 2008, 129, 174101.
19. Wenthold, P. G.; Squires, R. R.; Lineberger, W. C. J. Am. Chem. Soc. 1998, 120,
5279–5290.
20. Cycloreversion of 1,1,2,2-tetraphenylbenzocyclobutene to 7,7,8,8,tetraphenyl-
o-quinodimethane at low temperature shows that the conversion to the
thermodynamically stable bond-dissociated valence isomer is a very rapid
process: Quinkert, G.; Wiesdorff, W.-W.; Finke, M.; Opitz, K.; von der Haar, F.-G.
Chem. Ber. 1968, 101, 2302–2325; Tetraaryl-9,10-phenanthraquinodimathane
References and notes
1. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J.
Chem. Soc., Perkin Trans 2 1987, S1.
2. (a) Kaupp, G.; Boy, J. Angew. Chem., Int. Ed. 1997, 36, 48–49; (b) Siegel, J. S.
Nature 2006, 439, 801–802; (c) Tanaka, M.; Sekiguchi, A. Angew. Chem., Int. Ed.
2005, 44, 5821–5823; (d) Huntley, D. R.; Markopoulos, G.; Donovan, P. M.;
Scott, L. T.; Hoffmann, R. Angew. Chem., Int. Ed. 2005, 44, 7549–7553.
3. (a) Suzuki, T.; Takeda, T.; Kawai, H.; Fujiwara, K. Pure Appl. Chem. 2008, 80, 547–
553; (b) Suzuki, T.; Takeda, T.; Kawai, H.; Fujiwara, K. In Strained Hydrocarbon:
Ultralong C–C Bond; Dodziuk, H., Ed.; Wiley-VCH, 2009, pp 70–82.
4. Kahr, B.; Engen, D. V.; Mislow, K. J. Am. Chem. Soc. 1986, 108, 8305–8307.
5. Zavitsas, A. A. J. Phys. Chem. A 2003, 107, 897–898.
6. (a) Toda, F.; Tanaka, K.; Stein, Z.; Goldberg, I. Acta Crystallogr., Sect. C 1996, 52,
177–180; (b) Toda, F.; Tanaka, K.; Watanabe, M.; Tamura, K.; Miyahara, I.;
Nakai, T.; Hirotsu, K. J. Org. Chem. 1999, 64, 3102–3105; (c) Tanaka, K.;
Takamoto, N.; Tezuka, Y.; Kato, M.; Toda, F. Tetrahedron 2001, 57, 3761–3767;
(d) Toda, F.; Tanaka, K.; Takamoto, N. Tetrahedron Lett. 2001, 42, 7979–7982; (e)
Baldridge, K. K.; Kasahara, Y.; Ogawa, K.; Siegel, J. S.; Tanaka, K.; Toda, F. J. Am.
Chem. Soc. 1998, 120, 6167–6168.
7. Kammermeier, S.; Jones, P. G.; Herges, R. Angew. Chem., Int. Ed. 1997, 36, 1757–
1760.
was isolated as
a stable compound which no longer isomerises into the
8. (a) Kawai, H.; Takeda, T.; Fujiwara, K.; Wakeshima, M.; Hinatsu, Y.; Suzuki, T.
Chem. Eur. J. 2008, 14, 5780–5793; (b) Kawai, H.; Takeda, T.; Fujiwara, K.; Inabe,
T.; Suzuki, T. Cryst. Growth Des. 2005, 5, 2256–2260; (c) Kawai, H.; Takeda, T.;
Fujiwara, K.; Suzuki, T. Tetrahedron Lett. 2004, 45, 8289–8293.
9. The bond of 1.781(15) Å in a silabicyclobutane derivative had been the longest
among the non-ionic organic molecules before this Letter: Fritz, G.;
Wartanessian, S.; Matern, E.; Hönle, W.; Schnering, H. G. v. Z. Anorg. Allg.
Chem. 1981, 475, 87–108.
10. In some earlier examples, the coexistence of a bond-dissociated valence isomer
caused the misassignment of a too-large d value (Ref. 11), since X-ray structure
only gives the time- and position-averaged geometry of molecules in the
crystal. The true value of those cases was later proven to be much smaller by
low-temperature data collection and the careful examination of thermal
ellipsoids (Ref. 12).
corresponding HPE derivative (tetraarylphenanthracyclobutene): Iwashita, S.;
Ohta, E.; Higuchi, H.; Kawai, H.; Fujiwara, K.; Ono, K.; Takenaka, M.; Suzuki, T.
Chem. Commun. 2004, 2076–2077.
21. (a) Suzuki, T.; Nishida, J.; Tsuji, T. Angew. Chem., Int. Ed. 1997, 36, 1329–1331;
(b) Suzuki, T.; Ohta, E.; Kawai, H.; Fujiwara, K.; Fukushima, T. Synlett 2007,
851–869.
22. Spectral data of new compounds 1a–e/2a,b,d,e were given in Supplementary
data.
23. Wang, H.; Gabbaï, F. P. Org. Lett. 2005, 7, 283–285.
24. Some variation in d was observed in the HPE series of both 1 and 2. The larger d
value for the parent (1c) than the 3,5-Me2 derivative (1d) clearly shows that
the steric bulkiness of substituents on the aryl groups have nothing to do with
the C1–C2 bond. We are currently examining the electronic effects of the
substituents affecting the C1–C2 bond length (d) through the high-level
theoretical calculations, whose results will be reported in due course.
25. Dust, J. M.; Arnold, D. R. J. Am. Chem. Soc. 1983, 105, 1221–1227.
26. This is also the case for acenaphthene derivative 2c, which has a shorter C1–C2
bond [d = 1.701(3) Å (Ref. 23)]. Its Raman spectrum measured on the
crystalline sample has an intense band at 655 cmÀ1 (calcd 665 cmÀ1 by
11. Ehrenberg, M. Acta Crystallogr. 1966, 20, 182–186.
12. (a) Battersby, T. R.; Gantzel, P.; Baldridge, K. K.; Siegel, J. S. Tetrahedron Lett.
1995, 36, 845–848; (b) Harada, J.; Ogawa, K.; Tomoda, S. Chem. Lett. 1995, 24,
751–752.
13. One of the reviewers commented that more than 10% of diradical content
is necessary to observe the apparent bond expansion. Another reviewer, in
contrast, assumes that only few % of diradical contamination is enough to
produce the crystallographic artifact. The discrepancy of these experts’
claims suggests that there has been no established discussion on this
matter, for which this Letter can provide the important experimental
results.
*
B3LYP/6-31G ), which is less red shifted than in 1c. This is clear evidence that
1c has a bond with a smaller force constant than 2c, which is consistent with
the crystallographic data shown above.
27. Adcock, J. L.; Gakh, A. A.; Pollitte, J. L.; Woods, C. J. Am. Chem. Soc. 1992, 114,
3980–3981.