1
PMe), 1.83 (s, 6 H, Me, Xy). 13C{ H} NMR (100.8 MHz, CDCl3):
128, 7454; M. E. Van der Boom, Y. Ben-David and D. Milstein, J. Am.
Chem. Soc., 1999, 121, 6652; H. Torrens, Coord. Chem. Rev., 2005, 249,
1957; T. G. Richmond, Top. Organomet. Chem., 1999, 3, 243; M. M.
Kremlev, A. I. Mushta, W. Tyrra, D. Naumann, H. T. M. Fischer and
Y. L. Yagupolskii, J. Fluorine Chem., 2007, 128, 1385; J. Vela, J. M.
Smith, Y. Yu, N. A. Ketterer, C. J. Flaschenriem, R. J. Lachicotte and
P. L. Holland, J. Am. Chem. Soc., 2005, 127, 7857; R. P. Hughes, R. B.
Laritchev, L. N. Zakharov and A. L. Rheingold, J. Am. Chem. Soc.,
2004, 126, 2308; T. Braun and R. N. Perutz, Chem. Commun., 2002,
2749; T. Schaub, M. Backes and U. Radius, J. Am. Chem. Soc., 2006,
128, 15964.
2 V. V. Grushin and W. J. Marshall, J. Am. Chem. Soc., 2006, 128, 12644;
V. V. Grushin and W. J. Marshall, J. Am. Chem. Soc., 2006, 128, 4632.
3 D. Huang and K. G. Caulton, J. Am. Chem. Soc., 1997, 119, 3185; D.
Huang, P. R. Koren, K. Folting, E. R. Davidson and K. G. Caulton,
J. Am. Chem. Soc., 2000, 122, 8916.
d 161.8 (ddd, 1JFC = 273.5 and 302.2, 2JFC = 46.4 Hz, CF2), 149.4
(m, RhCN), 136.0 (s, C2, Xy), 135.5 (vt, N = 51.1 Hz, C1, Ph),
134.7 (vt, N = 48.1 Hz, C1, Ph), 132.8 (vt, N = 9.2 Hz, C2, Ph),
132.6 (vt, N = 10.1 Hz, C2, Ph), 129.8, 129.6 (both s, C4, Ph),
128.7 (s, C4, Xy), 127.7, 127.4 (both vt, N = 9.6 Hz, C3, Ph), 127.2
(s, C3, Xy), 125.5 (s, C1, Xy), 20.5 (vt, N = 35.7 Hz, PMe), 18.3
(s, Me, Xy); the CF3 and CF carbons signals were not observed.
19F NMR (282.4 MHz, CDCl3): d 2.9 (dddt, 2JRhF = 10.3, 3JPF
=
18.4, 5JFF = 10.3, 4JFF = 13.8 Hz, CF3), -88.3 (ddm, 2JFF (gem) =
3
=
84.2, JFF (cis) = 39.8 Hz, RhC CF trans to Rh), -114.8 (ddm,
JFF (gem) = 84.2, 3JFF (trans) = 106.8 Hz, RhC CF cis to Rh),
2
=
-140.6 (ddqt, 3JFF (cis) = 41.3, 3JFF (trans) = 107.9, 4JFF = 13.8,
4 P. M. Treichel and F. G. A. Stone, Adv. Organomet. Chem., 1964, 1,
143.
JPF = 14.3 Hz, RhCF C). 31P{ H} NMR (81.0 MHz, CDCl3): d
3
1
=
8.4 (ddq, 1JRhP = 95.6, 3JPF (CF3) = 17.8, 3JPF (RhCF C) = 14.3
=
5 M. I. Bruce, and F. G. A. Stone, in Preparative Inorganic Reactions, ed.
W. L. Jolly, Interscience Publishers, Bristol, 1968, vol. 4, pp. 177.
6 P. J. Brothers and W. R. Roper, Chem. Rev., 1988, 88, 1293.
7 R. C. Chambers, Fluorine in Organic Chemistry, Blackwell, Oxford,
UK, 2004; D. J. Burton and L. Lu, Top. Curr. Chem., 1997, 193, 45.
8 J. A. Morrison, Adv. Organomet. Chem., 1993, 35, 211.
9 We are not aware of the use of other metal perfluoroalkyls, such
are those of Cu(I) or Zn(II), in the synthesis of transition metal
perfluoroalkyl complexes.
10 P. J. Albietz, B. P. Clearly, W. Paw and R. Eisenberg, J. Am. Chem.
Soc., 2001, 123, 12091; A. A. Bowden, R. P. Hughes, D. C. Lindner,
C. D. Incarvito, L. M. Liable-Sands and A. L. Rheingold, J. Chem.
Soc., Dalton Trans., 2002, 3245.
11 J. Vicente, J. Gil-Rubio and D. Bautista, Inorg. Chem., 2001, 40, 2636;
F. L. Taw, B. L. Scott and J. L. Kiplinger, J. Am. Chem. Soc., 2003, 125,
14712.
12 J. Vicente, J. Gil-Rubio, J. Guerrero-Leal and D. Bautista,
Organometallics, 2004, 23, 4871.
13 D. A. Culkin and J. F. Hartwig, Organometallics, 2004, 23, 3398; D.
Naumann, N. V. Kirij, N. Maggiarosa, W. Tyrra, Y. L. Yagupolskii and
M. S. Wickleder, Z. Anorg. Allg. Chem., 2004, 630, 746.
14 J. Vicente, J. Gil-Rubio, J. Guerrero-Leal and D. Bautista,
Organometallics, 2005, 24, 5634.
15 T. Braun, D. Noveski, B. Neumann and H.-G. Stammler, Angew. Chem.,
Int. Ed., 2002, 41, 2745; D. Noveski, T. Braun, M. Schulte, B. Neumann
and A. Stammler, Dalton Trans., 2003, 4075.
-1
∫
=
˜
Hz). n (Nujol)/cm : 2182 (C N), 1706(C C).
Crystallography
The crystal structures of 10, 15 and 19 were measured on a Bruker
Smart APEX diffractometer. Data (Table 1) were collected using
monochromated MoKa radiation in w scan mode. The structures
were solved by direct methods and refined anisotropically on F2.
The methyl groups were refined using rigid groups and the other
hydrogens were refined using a riding mode. Special features of
compound 15: the largest residual electron density peak (2.46
-3
˚
˚
e A ) is present at 0.79 A of I2. This peak may be due to
residual absorption or unidentified disorder effects. The CF3
ligand and the trans iodine atom are mutually disordered, and
the site occupancies of each contributing disordered position were
refined to 72/28%.
Acknowledgements
We thank Direccio´n General de Investigacio´n/FEDER (grant
CTQ2007-60808/BQU, C-Consolider and a “Ramo´n y Cajal”
contract to J. G.-R.) and Fundacio´n Se´neca (Ayudas a los Grupos
y Unidades de Excelencia Cient´ıfica de la Regio´n de Murcia 2007–
2010, grant 02992/PI/05, and a contract to J. G.-L) for financial
support.
16 D. Noveski, T. Braun, B. Neumann, A. Stammler and H.-G. Stammler,
Dalton Trans., 2004, 4106; M. Aizenberg and D. Milstein, Science, 1994,
265, 359; M. Aizenberg and D. Milstein, J. Am. Chem. Soc., 1995, 117,
8674.
17 D. Ristic-Petrovic, M. Wang, R. McDonald and M. Cowle,
Organometallics, 2002, 21, 5172.
18 M. Green, R. B. L. Osborn, A. J. Rest and F. G. A. Stone, Chem.
Commun., 1966, 502; M. Green, R. B. L. Osborn, A. J. Rest and F. G. A.
Stone, J. Chem. Soc. A, 1968, 2525; J. Ashley-Smith, M. Green and
F. G. A. Stone, J. Chem. Soc. A, 1969, 3019; D. R. Fahey, J. Am.
Chem. Soc., 1970, 92, 402; J. Browning, M. Green and F. G. A. Stone,
J. Chem. Soc. A, 1971, 453; H. D. Empsall, M. Green, S. K. Shakshooki
and F. G. A. Stone, J. Chem. Soc. A, 1971, 3472; J. Fornies, M. Green,
A. Laguna, M. Murray, J. L. Spencer and F. G. A. Stone, J. Chem. Soc.,
Dalton Trans., 1977, 1515; V. A. Mukhedkar, B. J. Kavathekar and A. J.
Mukhedkar, J. Inorg. Nucl. Chem., 1977, 39, 1003; A. Christofides,
J. Organomet. Chem., 1983, 259, 355; P. J. Toscano and E. Barren,
J. Chem. Soc., Chem. Commun., 1989, 1159.
19 J. Burgess, M. M. Hunt and R. D. W. Kemmitt, J. Organomet. Chem.,
1977, 134, 131.
20 T. Braun, B. Bloecker, V. Schorlemer, B. Neumann, A. Stammler and
H.-G. Stammler, J. Chem. Soc., Dalton Trans, 2002, 2213.
21 B. L. Booth, R. N. Haszeldine and I. Perkins, J. Chem. Soc., Dalton
Trans., 1975, 1847.
Notes and references
1 J. L. Kiplinger, T. G. Richmond and C. E. Osterberg, Chem. Rev.,
1994, 94, 373; R. P. Hughes and D. C. Lindner, J. Am. Chem. Soc.,
1997, 119, 11544; K. Sato, M. Omote, A. Ando and I. Kumadaki,
Org. Lett., 2004, 6, 4359; R. P. Hughes, S. Willemsen, A. Williamson
and D. Zhang, Organometallics, 2002, 21, 3085; R. P. Hughes, J. M.
Smith, C. D. Incarvito, K.-C. Lam, B. Rhatigan and A. L. Rheingold,
Organometallics, 2002, 21, 2136; R. P. Hughes, D. C. Lindner, L. M.
Liable-Sands and A. L. Rheingold, Organometallics, 2001, 20, 363;
K. Mikami, T. Murase and Y. Itoh, J. Am. Chem. Soc., 2007, 129,
11686; R. P. Hughes, R. B. Larichev, L. N. Zakharov and A. L.
Rheingold, Organometallics, 2006, 25, 3943; R. P. Hughes, D. Zhang,
L. N. Zakharov and A. L. Rheingold, Organometallics, 2002, 21, 4902;
S. A. Garrat, R. P. Hughes, I. Kovacik, A. J. Ward, S. Willemsen and
D. Zhang, J. Am. Chem. Soc., 2005, 127, 15585; R. P. Hughes, R. B.
Laritchev, J. Yuan, J. A. Golen, A. N. Rucker and A. L. Rheingold,
J. Am. Chem. Soc., 2005, 127, 15020; C. J. Bourgeois, R. P. Hughes, J.
Yuan, A. G. DiPasquale and A. L. Rheingold, Organometallics, 2006,
25, 2908; P. J. Albietz, Jr., J. F. Houlis and R. Eisenberg, Inorg. Chem.,
2002, 41, 2001; R. P. Hughes, R. B. Laritchev, L. N. Zakharov and
A. L. Rheingold, J. Am. Chem. Soc., 2005, 127, 6325; H. Huang, R. P.
Hughes, C. R. Landis and A. L. Rheingold, J. Am. Chem. Soc., 2006,
22 A. J. Mukhedkar, V. A. Mukhedkar, M. Green and F. G. A. Stone,
J. Chem. Soc. A, 1970, 3166; A. C. Jarvis and R. D. W. Kemmit,
J. Organomet. Chem., 1974, 81, 415; M. J. Mays and G. Wilkinson,
J. Chem. Soc., 1965, 6629.
23 C. A. Tolman, Chem. Rev., 1977, 77, 313.
24 M. Ahijado, T. Braun, D. Noveski, N. Kocher, B. Neumann, D. Stalke
and H.-G. Stammler, Angew. Chem., Int. Ed., 2005, 44, 6947; A.
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 3854–3866 | 3865
©