characterization) while corresponding DHPMs were isolated
as minor products.
classical Biginelli reaction in terms of preparing structurally
novel DHPMs and related heterocyclic isomers.
We thank the NSFC of China (20775069), NCET-06-0520
of the National Ministry of Education of China for financial
support on this work.
Unlike the classical Biginelli reaction, the above reactions
plausibly proceeded via the Hofmann elimination of THPM 9.
Therefore, we managed to synthesize 9 under less drastic
catalyst conditions (eqn (1)). Hence, THPM 9 was subjected
to the aforementioned standard conditions, and it was
smoothly converted to DHPM 4b in almost quantitative yield
(98%), which suggested 9 as the key intermediate in the
reaction process.
Notes and references
1 P. Biginelli, Gazz. Chim. Ital., 1893, 23, 360.
2 (a) C. O. Kappe, Eur. J. Med. Chem., 2000, 35, 1043;
(b) A. I. McDonald and L. E. Overman, J. Org. Chem., 1999, 64, 1520.
3 G. C. Rovnyak, K. S. Atwal, A. Hedeberg, S. D. Kimball,
S. Moreland, J. Z. Gougoutas, B. C. O’Reilly, J. Schwart and
M. F. Malley, J. Med. Chem., 1992, 35, 3254.
4 T. Matsuda and I. Hirao, Nippon Kagaku Zasshi, 1965, 86, 1195.
5 E. W. Hurst and R. Hull, J. Med. Pharm. Chem., 1961, 3, 215.
6 (a) V. Kettmann, J. Drimal and J. Svetlik, Pharmazie, 1996, 51,
747; (b) C. O. Kappe, Molecules, 1998, 3, 1; (c) B. Jauk, T. Pernat
and C. O. Kappe, Molecules, 2000, 5, 227.
7 (a) T. M. Mayer, T. M. Kapoor, S. J. Haggarty, R. W. King,
S. L. Schreiber and T. J. Mitchison, Science, 1999, 286, 971;
(b) I. Garcia-Saez, S. DeBonis, R. Lopez, F. Trucco, B. Rousseau,
ð1Þ
P. Thuery and F. Kozielski, J. Biol. Chem., 2007, 282, 9740.
´
8 Recent examples of the Biginelli reaction: (a) B. C. Ranu, A. Hajra
and U. Jana, J. Org. Chem., 2000, 65, 6270; (b) M. J. Lusch and
J. A. Tallarico, Org. Lett., 2004, 6, 3237; (c) X. Y. Han, F. Xu,
Y. Q. Luo and Q. Shen, Eur. J. Org. Chem., 2005, 1500;
(d) J. C. Legeay, J. J. Vanden Eynde and J. P. Bazureau, Tetra-
hedron, 2005, 61, 12386; (e) B. L. Nilsson and L. E. Overman,
J. Org. Chem., 2006, 71, 7706; (f) I. Cepanec, M. F.-L. M. Litvic
and I. Grungold, Tetrahedron, 2007, 63, 11822; (g) M. I. Lannou,
F. Helion and J. L. Namy, Synlett, 2008, 105.
9 For reviews on the Biginelli reaction, see: (a) C. O. Kappe,
Tetrahedron, 1993, 49, 6937; (b) C. O. Kappe, Acc. Chem. Res.,
2000, 33, 879; (c) C. O. Kappe and A. Stadler, Org. React., 2004, 63,
1. For work on the application of the Biginelli reaction:
(d) C. O. Kappe and S. F. Falsone, Synlett, 1998, 718;
(e) C. O. Kappe, Bioorg. Med. Chem. Lett., 2000, 10, 49;
(f) B. Jauk, F. Belaj and C. O. Kappe, J. Chem. Soc., Perkin Trans.
1, 1999, 307; (g) F. S. Falsone and C. O. Kappe, ARKIVOC, 2001, 2,
1111; (h) A. Stadler and C. O. Kappe, J. Comb. Chem., 2001, 3, 624;
(i) C. O. Kappe, QSAR Comb. Sci., 2003, 22, 630; (j) B. Khanetskyy,
D. Dallinger and C. O. Kappe, J. Comb. Chem., 2004, 6, 884. For a
study of mechanism: (k) C. O. Kappe, J. Org. Chem., 1997, 62, 7201.
10 (a) B. C. O’Reilly and K. S. Atwal, Heterocycles, 1987, 26, 1185;
(b) K. S. Atwal, G. C. Rovnyak, B. C. O’Reilly and J. Schwartz,
J. Org. Chem., 1989, 54, 5898; (c) L. E. Overman and
M. H. Rabinowitz, J. Org. Chem., 1993, 58, 3235;
(d) L. E. Overman, M. H. Rabinowitz and P. A. Renhowe,
J. Am. Chem. Soc., 1995, 117, 2657.
The understanding of the reaction process promoted us to
explore the reaction using enaminones with nucleophilic
groups at the ortho position of the benzene ring, which was
expected to trigger the generation of a further fused product.
To our surprise, when 2-hydroxylphenyl enaminone 10 was
used, 3-substituted chromones 11 were selectively furnished
(Table 5), while the dimers 12 were occasionally formed as side
products. The results represent a formally Baylis–Hillman-type
reaction, but what is interesting is that the acidic conditions
in this reaction are significantly different from the basic
conditions in the classical Baylis–Hillman reaction. It is
noteworthy that doubling the amount of aldehyde, enaminone
and the catalyst does not increase the yield of 12, which
demonstrated the good chemoselectivity of this reaction.
In summary, we have developed several new variants of the
Biginelli reaction. In contrast to the traditional Biginelli
reaction, the present method bears specific novelty not only
because of the 6-unsubstituted DHPMs, but also because of
the manipulable synthesis of other important heterocyclic
systems, such as 1,3-thiazines and chromones. A plausible
mechanism has been demonstrated based on the synthesis of
THPM 9 and its transformation to the corresponding DHPM.
The methodology provides an important supplement to the
11 (a) J. C. Bussolari and P. A. McDonnell, J. Org. Chem., 2000, 65,
6777; (b) Z. T. Wang, L. W. Xu, C. G. Xia and H. Q. Wang,
Tetrahedron Lett., 2004, 45, 7951; (c) B. Liang, X. T. Wang,
J. X. Wang and Z. Y. Du, Tetrahedron, 2007, 63, 1981.
12 (a) C. D. Bailey, C. E. Houlden, G. L. J. Bar, G. C. Lloyd-Jones and
K. I. Booker-Milburn, Chem. Commun., 2007, 2932. Also, Kolosov
et al. have developed the synthesis of 6-substituted DHPMs by
applying acetoxy acetaldehyde previously, see: (b) M. A. Kolosov
and V. D. Orlov, Zh. Org. Farm. Khim., 2005, 3, 17.
Table 5 Selective synthesis of 3-substituted chromonesa
13 For recent reviews and practical examples of multicomponent
reactions, see: (a) J. P. Zhu, Eur. J. Org. Chem., 2003, 1133;
(b) A. Domling, Chem. Rev., 2006, 106, 17; (c) V. Nair,
¨
C. Rajesh, A. U. Vinod, S. Bindu, A. R. Sreekanth, J. S. Mathen
and L. Balagopal, Acc. Chem. Res., 2003, 36, 899.
Entry
R1
R2
X
Product
Yield (%)b
14 (a) S. L. Huang, Y. J. Pan, Y. L. Zhu and A. X. Wu, Org. Lett.,
2005, 7, 3797; (b) Y. L. Zhu, S. L. Huang, J. P. Wan, L. Yan,
Y. J. Pan and A. X. Wu, Org. Lett., 2006, 8, 2599; (c) Y. L. Zhu,
S. L. Huang and Y. J. Pan, Eur. J. Org. Chem., 2005, 2354;
(d) J. P. Wan, J. Zhou, H. Mao, Y. J. Pan and A. X. Wu,
Tetrahedron, 2008, 64, 11115.
15 For reviews on the application of enaminones, see: (a) B. Stanovnik
and J. Svete, Chem. Rev., 2004, 104, 2433; (b) A. Z. A. Elassar and
A. A. EI-Khair, Tetrahedron, 2003, 59, 8463; (c) P. Lue and
J. V. Creenhill, Adv. Heterocycl. Chem., 1997, 34, 1347.
1
2
3
4
5
6
7
4-MeC6H4
4-ClC6H4
NH2
NH2
NH2
NH2
NH2
NH2
CH3
S
S
S
S
O
O
O
11a ( 12a)
11b (12b)
11c
11d
11e
61 (16)
70 (13)
83
3-MeOC6H4
(CH3)2CHCH2
4-NO2C6H4
4-MeOC6H4
4-FC6H4
62
77
68
85
11f
11g
a
b
Identical conditions as Table 2. Isolated yield based on aldehyde.
ꢁc
This journal is The Royal Society of Chemistry 2009
2770 | Chem. Commun., 2009, 2768–2770