Reaction Mechanisms
FULL PAPER
7.78 ppm (AA’BB’ system, J=8.2 Hz, 4H); 13C NMR (50 MHz, CDCl3,
258C, TMS): d=22.2, 22.3, 37.6, 37.7, 45.8, 52.5, 53.8, 80.4, 80.6, 128.2,
128.4, 129.6, 130.1, 130.4, 130.6, 132.2, 134.0, 135.1, 136.2, 138.6, 144.7,
145.0, 145.3 ppm; IR n˜ =2923, 1335, 1157 cmꢀ1; MS (MALDI-TOF: m/z:
1106 [M+H]+, 1128 [M+Na]+, 1144 [M+K]+; elemental analysis calcd
(%) for C55H55N5O10S5.EtOAc (1194.495): C 59.33, H 5.32, N, 5.86;
found: C 59.14 and 59.10, H 5.21 and 5.26, N 6.18 and 6.21.
[6] A. Torrent, I. Gonzꢇlez, A. Pla-Quintana, A. Roglans, M. Moreno-
[7] I. Gonzꢇlez, S. Bouquillon, A. Roglans, J. Muzart, Tetrahedron Lett.
2007, 48, 6425–6428.
[8] S. Brun, L. Garcia, I. Gonzꢇlez, A. Torrent, A. Dachs, A. Pla-Quin-
[9] C. Bianchini, K. G. Caulton, C. Chardon, M.-L. Doublet, O. Eisen-
stein, S. A. Jackson, T. J. Johnson, A. Meli, M. Peruzzini, W. E.
[10] J. H. Hardesty, J. B. Koerner, T. A. Albright, G.-Y. Lee, J. Am.
X-ray data for 3a: CCDC-707902 (3a) contains the supplementary crys-
tallographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
Computational methods: All geometry optimisations were performed by
using the hybrid DFT B3LYP[34–36] method with the Gaussian 03[37] pro-
gram package. The geometry optimisations were performed without sym-
metry constraints. Analytical Hessians were computed to determine the
nature of stationary points (one or zero imaginary frequencies for transi-
tion states and minima, respectively) and to calculate unscaled zero-point
energies (ZPEs) as well as thermal corrections and entropy effects by
using the standard statistical-mechanics relationships for an ideal gas.[38]
These last two terms were computed at 298.15 K and 1 atm to provide
the reported relative Gibbs free energies (DG298). Furthermore, the con-
nectivity between stationary points was established by intrinsic reaction
path[39] calculations. The all-electron cc-pVDZ basis set was used for P,
O, N, C and H atoms,[40,41] while for Rh we employed the cc-pVDZ-PP
basis set,[42] containing an effective core relativistic pseudopotential. Rel-
ative energies were computed taking into account the total number of
molecules present. The SO2-Ar moieties present in the experimental 15-,
20- and 25-membered acetylenic azamacrocycles and the Ph group in the
catalyst were substituted by H atoms to reduce the computational com-
plexity of the calculations involving these ligands. Substitution of PPh3 by
[13] N. Agenet, V. Gandon, K. P. C. Vollhardt, M. Malacria, C. Aubert, J.
[14] K. Kirchner, M. J. Calhorda, R. Schmid, L. F. Veiros, J. Am. Chem.
[17] G. Dazinger, M. Torres-Rodrigues, K. Kirchner, M. J. Calhorda, P. J.
[20] Y. Yamamoto, K. Kinpara, T. Saigoku, H. Takagishi, S. Okuda, H.
PH3 is
a common procedure in theoretical organometallic chemis-
try.[10,31,43–47] In addition, we have checked that, despite the electronic and
steric differences, substitution of PPh3 by PH3 does not introduce signifi-
cant changes in the thermodynamics and kinetics of the cyclotrimerisa-
tion of three acetylene molecules.[48] A previous study found that solvent
effects due to toluene and acetonitrile in [2+2+2] cyclotrimerisations are
minor, likely due to the absence of charged or polarised intermediates
and transition states in the reaction mechanism.[18] Because the reactions
studied are carried out in toluene, solvent effects have not been included
in the present calculations. Finally, since there is no experimental data
suggesting the presence of paramagnetic intermediates, our studies were
limited to the singlet-spin potential-energy surfaces. However, we did cal-
culations for the triplet form of several intermediates and they were
found always higher in energy than the singlet counterparts.
[23] V. Gandon, N. Agenet, K. P. C. Vollhardt, M. Malacria, C. Aubert, J.
[24] M. M. Montero-Campillo, J. Rodrꢂguez-Otero, E. Cabaleiro-Lago, J.
[25] J. Rodrꢂguez-Otero, M. M. Montero-Campillo, E. Cabaleiro-Lago, J.
Phys. Chem. A 2008, 112, 8116–8120.
[29] Indeed, at the same level of theory, substitution of two phosphine li-
gands by acetylene molecules in [RhClACTHUNGTRENNNUG
about 12 kcalmolꢀ1, while in [RhCl
ACHTUNGTRENNUNG
only 0.3 kcalmolꢀ1 (A. Dachs, S. Osuna, A. Roglans, M. Solꢁ, un-
published results).
Acknowledgements
[30] P. I. Dosa, G. D. Whitener, K. P. C. Vollhardt, A. D. Bond, S. J. Teat,
[31] L. F. Veiros, G. Dazinger, K. Kirchner, M. J. Calhorda, R. Schmid,
We would like to thank the Spanish MEC (projects CTQ2005-04968-C02-
02/BQU;
CTQ2005-08797-C02-01/BQU;
CTQ2008-03077/BQU;
CTQ2008-05409-C02-02/BQU; CTQ2006-01080) and the Catalan DURSI
(projects 2005SGR-00238; 2005SGR-00305) for their financial support.
A.D. and S.O. thank the Spanish MEC for a doctoral fellowship. We also
acknowledge the Centre de Supercomputaciꢆ de Catalunya (CESCA) for
partial funding of computer time. We thank the Research Technical Serv-
ices of the UdG for spectral data, especially Xavier Fontrodona for X-
ray diffraction analysis.
[32] W. J. Bowyer, J. W. Merkert, W. E. Geiger, A. L. Rheingold, Orga-
[33] E. ꢈlvarez, M. Gꢆmez, M. Paneque, C. M. Posadas, M. L. Poveda,
N. Rendꢆn, L. L. Santos, S. Rojas-Lima, V. Salazar, K. Mereiter, C.
Ruiz, J. Am. Chem. Soc. 2003, 125, 1478–1479.
[36] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys.
[37] Gaussian 03, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schle-
gel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgom-
AHCTUNGTREGeNNUN ry, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani,
N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
[5] A. Pla-Quintana, A. Roglans, A. Torrent, M. Moreno-MaÇas, J.
Chem. Eur. J. 2009, 15, 5289 – 5300
ꢄ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5299