M. W. Ledeboer et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6529–6533
6533
fluorine are significantly more polarized, leading to a more favor-
able interaction with JAK2 that is unavailable in JAK3.
Next, the pharmacokinetic parameters were determined for
compounds with good cellular and enzyme potency. It is evident
from Table 4 that several compounds exhibit a favorable IV PK pro-
file. While compounds 40 and 44 are rapidly cleared as indicated
by high clearances and short T1/2, both compounds 45 and 46 ex-
hibit favorable IV PK profiles with reduced clearance, greater expo-
sure and extended half-lives.
In summary, we have identified potent and selective JAK2
inhibitors with an aminopyrazolopyrimidine core. Specific incor-
poration of the benzylic moiety dramatically enhanced cell po-
tency while maintaining JAK2 isotype selectivity through
a
unique CHÁ Á ÁO hydrogen bond with Gly 993. In addition, several
examples showing promising PK profiles were also identified.
Supplementary data
Figure 2. Crystal structure of compound 40. The CHÁ Á ÁO hydrogen bond between
Supplementary data associated with this article can be found, in
the ligand and the carbonyl of Gly 993 is shown in red dashes.
References and notes
Table 4
Pharmacokinetic parameters determined following single IV administration (1 mg/kg)
in male Sprague-Dawley rats
1. Vardiman, J. W.; Harris, N. L.; Brunning, R. D. Blood 2002, 100, 2292.
2. (a) Leonard, W. J.; O’Shea, J. J. Annu. Rev. Immunol. 1998, 16, 293; (b) Wilks, A. F.
Semin. Cell Dev. Biol. 2008, 19, 319.
Compds
Cl (mL/min/kg)
t1/2 (h)
Vss (L/kg)
AUCinf (g h/mL)
3. (a) James, C.; Ugo, V.; Le Couédic, J. P.; Staerk, J.; Delhommeau, F.; Lacout, C.;
Garçon, L.; Raslova, H.; Berger, R.; Bennaceur-Griscelli, A.; Villeval, J. L.;
Constantinescu, S. N.; Casadevall, N.; Vainchenker, W. Nature 2005, 434, 1144;
(b) Levine, R. L.; Wadleigh, M.; Cools, J.; Ebert, B. L.; Wernig, G.; Huntly, B. J. P.;
Boggon, T. J.; Wlodarska, I.; Clark, J. J.; Moore, S.; Adelsperger, J.; Koo, S.; Lee, J.
C.; Gabriel, S.; Mercher, T.; D’Andrea, A.; Froehling, S.; Doehner, K.; Marynen, P.;
Vandenberghe, P.; Mesa, R. A.; Tefferi, A.; Griffin, J. D.; Eck, M. J.; Sellers, W. R.;
Meyerson, M.; Golub, T. R.; Lee, S. J.; Gilliland, D. G. Cancer Cell 2005, 7, 387; (c)
Baxter, E. J.; Scott, L. M.; Campbell, P. J.; East, C.; Fourouclas, N.; Swanton, S.;
Vassiliou, G. S.; Bench, A. J.; Boyd, E. M.; Curtin, N.; Scott, M. A.; Erber, W. N.;
Green, A. R. Lancet 2005, 365, 1054; (d) Kralovics, R.; Passamonti, F.; Buser, A.
S.; Teo, S.-S.; Tiedt, R.; Passweg, J. R.; Tichelli, A.; Cazzola, M.; Skoda, R. C. N. Eng.
J. Med. 2005, 352, 1779.
40
44
45
46
104
111
43.6
34.7
0.9
0.7
3.3
2.4
5.1
4.5
9.5
5.1
0.16
0.15
0.38
0.48
Mean values determined from the concentration (as determined using a specific LC/
MS/MS method) of each compound in rat (n = 2) plasma samples collected prior to
dosing up to 8 h post-dose.
when a 4-Cl phenyl group was present (39), suggesting size limita-
tions of the pocket. Constraining the compounds to further to en-
hance potency and to improve the pharmacokinetic profile of the
compound did not meet with success and in all cases we saw a
drop in enzyme and/or cell potency (41–43). Additional explora-
tion of benzylic substitution identified several other potent com-
pounds that retained much of the isotype selectivity against JAK3
(approx. 20-fold) while still exhibiting submicromolar cellular
activity (44–46).
Next, we assessed the cellular selectivity for JAK2 versus JAK3
mediated STAT-5 phosphorylation. GMCSF stimulation of TF1 cells
leads to STAT-5 phosphorylation by JAK2, while IL2 stimulation of
HT2 cell lines yields phospho-STAT-5 via the JAK3 pathway.16 As
shown in Table 3, for our most potent compounds a good correla-
tion between the enzymatic and cellular selectivity was observed
and cellular selectivities ranged from 8- to 32-fold (40, 44–46).
Compound 45 was found to be the most selective (32-fold).
Screening of selected compounds against our in-house panel of
kinases revealed the series to be quite selective. For example, com-
pound 46 hit only 2 of 24 kinases at Ki <200 nM (FLT3 Ki = 160 nM
and ROCK Ki = 190 nM).
To better understand the effect of F-substitution on selectivity,
we determined the X-ray crystallographic complex of 40 bound to
the kinase domain of JAK2. The selectivity of the 4-F benzylamines
arises from a unique CHÁ Á ÁO hydrogen bond with Gly 993 in JAK2,
as shown in Figure 2.17 In JAK3 this residue is an Ala, and very few
kinases have a Gly in this position as JAK2 does. Because of the flex-
ibility of the glycine side-chain, the protein backbone of JAK2 can
flip up to form a hydrogen bond with the aromatic CH of the ben-
zylamine. While the unsubstituted phenyl does make a weak inter-
action with the carbonyl oxygen, the CH groups adjacent to the
4. For
a recent review on the role of JAK2 mutations in myleoproliferative
disorders see: Morgan, K. J.; Gilliland, D. G. Annu. Rev. Med. 2008, 59, 213.
5. (a) Lucet, I. S.; Fantino, E.; Styles, M.; Bamert, R.; Patel, O.; Broughton, S. E.;
Walter, M.; Burns, C. J.; Treutlein, H.; Wilks, A. F.; Rossjohn, J. Blood 2006, 107,
176; (b) Antonysamy, S.; Hirst, G.; Park, F.; Sprengeler, P.; Stappenbeck, F.;
Steensma, R.; Wilson, M.; Wong, M. Bioorg. Med. Chem. Lett. 2009, 19, 279; (c)
Williams, N. K.; Bamert, R. S.; Patel, O.; Wang, C.; Walden, P. M.; Wilks, A. F.;
Fantino, E.; Rossjohn, J.; Lucet, I. S. J. Mol. Biol. 2009, 387, 219; (d) Manshouri, T.;
Quintás-Cardama, A.; Nussenzveig, R. H.; Gaikwad, A.; Estrov, Z.; Prchal, J.;
Cortes, J. E.; Kantarjian, H. M.; Verstovsek, S. Cancer Sci. 2008, 99, 1265.
6. Crystallographic data for the structures in this paper have been deposited with
the RCSB Protein Data Bank. Compound 12, PDB accession code: 3IO7;
compound 42, PDB accession code: 3IOK.
7. Boggon, T. J.; Li, Y.; Manley, P. W.; Eck, M. J. Blood 2005, 106, 996.
8. (a) Nyberg, W. H.; Cheng, C. C. J. Heterocycl. Chem. 1964, 1, 1; (b) Marchal, L.;
Promel, R.; Martin, R. H.; Cardon, A. Bull. Soc. Chim. Belg. 1960, 69, 177.
9. (a) Schnyder, A.; Indolese, A. F.; Maetzke, T.; Wenger, J.; Blaser, H.-U. Synlett
2006, 3167; (b) Indolese, A. F.; Schynder, A.; Aemmer, T.; Nsenda, T.; Portmann,
R. M.. In Synthetic Methods in Organometallic and Inorganic Chemistry; Hermann,
W. A., Ed.; Thieme: New York, 2002; Vol. 10, p 105.
10. (a) Elnagdi, M. H.; Sallam, M. M. M.; Ilias, M. A. M. Helv. Chim. Acta 1975, 58,
1944; (b) Shaaban, M. R.; Saleh, T. S.; Farag, A. M. Heterocycles 2007, 71, 1765.
11. (a) Sawayama, T.; Yamamoto, R.; Kinugasa, H.; Nishimura, H. Heterocycles
1977, 8, 299; (b) Nagashima, S.; Yokota, M.; Nakai, E.-I.; Kuromitsu, S.; Ohga, K.;
Takeuchi, M.; Tsukamoto, S.-I.; Ohta, M. Bioorg. Med. Chem. 2007, 15, 1044.
12. Chiral benzyl amines were prepared following the methods described in: Liu,
G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1997, 119, 9913.
13. For the convenient preparation of small secondary amines see: Dubowchik, G.
M.; Michne, J. A.; Zuev, D. Bioorg. Med. Chem. Lett. 2004, 14, 3147.
14. (a) Coste, J.; Le-Nguyen, D.; Castro, B. Tetrahedron Lett. 1990, 31, 205; (b) Frerot,
E.; Coste, J.; Pantaloni, A.; Dufour, M. N.; Jouin, P. Tetrahedron 1991, 47, 259.
15. For full details regarding JAK2 and JAK3 Ki determinations refer to
Supplementary data and the following references: (a) Fox, T.; Coll, J. T.; Ford,
P. J.; Germann, U. A.; Porter, M. D.; Pazhanisamy, S.; Fleming, M. A.; Galullo, V.;
Su, M.-S.; Wilson, K. P. Protein Sci. 1998, 7, 2249; (b) Morrison, J. F.; Stone, S. R.
Comments Mol. Cell. Biophys. 1985, 2, 347.
16. For full details regarding IC50 determinations using TF-1 and HT-2 cells refer to
Supplementary data.
17. (a) Taylor, R.; Kennard, O. J. Am. Chem. Soc. 1982, 104, 5063; (b) Pierce, A. C.;
Sandretto, K. L.; Bemis, G. W. Proteins 2002, 49, 567.