Al-Ouahabi et al.
An important physicochemical property displayed by the
majority of conjugated organic oligomers and polymers is that
of luminescence both in solution and the solid state when
irradiated with light of particular wavelengths. For OLEDs, the
luminescence is generated electrically, and it is of special
importance to tune the conjugation of the oligomer/polymer in
a controllable way in order to obtain electroluminescence of a
desired color.
For both electrically and light-stimulated emission, surpris-
ingly little is currently understood about how the relative
alignments between the oligomer/polymer chains and the
detailed nature of their interchain contacts affect their physical
properties such as luminescence color, quantum yield, and
electrochemical behavior.5a-e The overall efficiency of OLEDs
is determined by both the charge transport and emissive
properties of the materials used, however it is clear that short
interchain contacts such as aromatic stacking will favor charge
transport but may significantly decrease the overall luminescence
quantum yield.
In general, short interchain contacts would thus facilitate
luminescence energy transfer between oligomer/polymer chains
and maximize the chance of loss in energy as heat. The excitons
would also be able to hop between polymer chains enabling
the preferred light re-emission from the chromophores of lowest
energy. This effect is observed with blended mixtures of
different chromophores which emit light only from the chro-
mophore of lowest energy, thereby preventing the possibility
of luminescence color tuning by mixing chromophores of
differing emission energies.6
One way of increasing the luminescence emission efficiency
of conjugated organic polymers and oligomers would be to
increase the interchain distances by encapsulation in media
transparent to light,7a-c or alternatively to protect the chains as
rotaxanes or wrapped inside helical polysaccharides.8a-c Both
approaches have had some success, although the former avenue
provides little control of interchain contacts at a molecular level
while the latter may be synthetically demanding. A third
approach is to synthesize conjugated polymers and oligomers
with sterically bulky substituents covalently attached either to
the main backbone or capping the chain ends. Such substituents
are often branched or dendritic and serve to both increase
solubility and minimize interchain contacts.8b,9a,b
In the case of OLEDs, however, if conjugated systems are
too isolated, then the efficiency of interchain charge transport
would be reduced. With long polymers, significant charge
transport would be possible along the polymer chains, and the
negative effects of isolation upon the charge transport would
be less severe. An alternative approach would also be to
construct block copolymers comprising segments which may
engage in aromatic stacking interactions to aid interchain charge
transport and sterically isolated segments to enhance emission
efficiency.
One of the most highly studied and synthetically accessible
classes of conjugated organic polymers is that of the polyphe-
nylethynylenes.10 They have been prepared with a diverse range
of different substituents for the purpose of developing new types
of OLEDs, sensors, redox, antenna, and photoconducting and
photorefractive materials. Recently, a class of molecular phe-
nyleneethynylenes comprising 1,2,4,5-tetraarylethynylbenzenes
and 1,2-diarylethynyl-4,5-diarylethenylbenzenes, known as cru-
ciforms, have been the focus of a surge in interest due to their
(8) (a) Frampton, M. J.; Claridge, T. D. W.; Latini, G.; Brovelli, S.; Cacialli,
F.; Anderson, H. L. Chem. Commun. 2008, 2797–2799. (b) Frampton, M. J.;
Anderson, H. L. Angew. Chem. Int. Ed 2007, 46, 1028–1064, and references
cited therein. (c) Eelkema, R.; Maeda, K.; Odell, B.; Anderson, H. L. J. Am.
Chem. Soc. 2007, 129, 12384–12385.
(9) (a) Englert, B. C.; Smith, M. D.; Hardcastle, K. I.; Bunz, U. H. F.
Macromolecules 2004, 37, 8212–8221. (b) Gibtner, T.; Hampel, F.; Gisselbrecht,
J.-P.; Hirsch, A. Chem.sEur. J. 2002, 8, 408–432.
(10) Bunz, U. H. F. Chem. ReV. 2000, 100, 1605–1644.
(11) The majority of work reported to date concerns cruciforms constructed
from single, non-oligomeric 1,2,4,5-tetrasubstituted benzene cores which we have
called [1]cruciforms. For recent examples of the spectroscopic and electrochemi-
cal properties of [1]cruciforms, see: (a) Samori, S.; Tojo, S.; Fujitsuka, M.; Spitler,
E. L.; Haley, M. M.; Majima, T. J. Org. Chem. 2008, 73, 3551–3558. (b) Wilson,
J. N.; Hardcastle, K. I.; Josowicz, M.; Bunz, U. H. F. Tetrahedron 2004, 60,
7157–7167. (c) Wilson, J. N.; Smith, M. D.; Enkelmann, V.; Bunz, U. H. F.
Chem. Commun. 2004, 1700–1701. (d) Wilson, J. N.; Josowicz, M.; Wang, Y.;
Bunz, U. H. F. Chem. Commun. 2003, 2962–2963. (e) Klare, J. E.; Tulevski,
G. S.; Sugo, K.; de Picciotto, A.; White, K. A.; Nuckolls, C. J. Am. Chem. Soc.
2003, 125, 6030–6031. (f) Diederich, F.; Philp, D.; Seiler, P. J. Chem. Soc.,
Chem. Commun. 1994, 205–208. For sensory applications of [1]cruciform
fluorophores, see: (g) McGrier, P. L.; Solntsev, K. M.; Miao, S.; Tolbert, L. M.;
Miranda, O. R.; Rotello, V. M.; Bunz, U. H. F. Chem.sEur. J. 2008, 14, 4503–
4510. (h) McGrier, P. L.; Solntsev, K. M.; Scho¨nhaber, J.; Brombosz, S. M.;
Tolbert, L. M.; Bunz, U. H. F. Chem. Commun. 2007, 2127–2129. (i) Spitler,
E. L.; Shirtcliff, L. D.; Haley, M. M. J. Org. Chem. 2007, 72, 86–96. (j) Hauck,
M.; Scho¨nhaber, J.; Zucchero, A. J.; Hardcastle, K. I.; Mu¨ller, T. J. J.; Bunz,
U. H. F. J. Org. Chem. 2007, 72, 6714–6725. (k) Brombosz, S. M.; Zucchero,
A. J.; Phillips, R. L.; Vazquez, D.; Wilson, A.; Bunz, U. H. F. Org. Lett. 2007,
9, 4519–4522. (l) Zucchero, A. J.; Wilson, J. N.; Bunz, U. H. F. J. Am. Chem.
Soc. 2006, 128, 11872–11881. (m) Wilson, J. N.; Bunz, U. H. F. J. Am. Chem.
Soc. 2005, 127, 4124–4125. For the metallo-assembly of prisms and polymers
incorporating [1]cruciforms, see: (n) Caskey, D. C.; Yamamoto, T.; Addicott,
C.; Shoemaker, R. K.; Vacek, J.; Hawkridge, A. M.; Muddiman, D. C.; Kottas,
G. S.; Michl, J.; Stang, P. J. J. Am. Chem. Soc. 2008, 130, 7620–7628. (o)
Gerhardt, W. W.; Zucchero, A. J.; South, C. R.; Bunz, U. H. F.; Weck, M.
Chem.sEur. J. 2007, 13, 4467–4474. (p) Gerhardt, W. W.; Zucchero, A. J.;
Wilson, J. N.; South, C. R.; Bunz, U. H. F.; Weck, M. Chem. Commun. 2006,
2141–2143. (q) Manimaran, B.; Thanasekaran, P.; Rajendran, T.; Liao, R.-T.;
Liu, Y.-H.; Lee, G.-H.; Peng, S.-M.; Rajagopal, S.; Lu, K.-L. Inorg. Chem. 2003,
42, 4795–4797. For the use of [1]cruciforms for the construction of switches,
nanoparticle and multimagnetic assemblies, see: (r) Grunder, S.; Huber, R.;
Horhoiu, V.; Gonza´lez, M. T.; Scho¨nenberger, C.; Calame, M.; Mayor, M. J.
Org. Chem. 2007, 72, 8337–8344. (s) Lim, I.-I. S.; Vaiana, C.; Zhang, Z.-Y.;
Zhang, Y.-J.; An, D.-L.; Zhong, C.-J. J. Am. Chem. Soc. 2007, 129, 5368–5369.
(t) Amoroso, A. J.; Cargill Thompson, A. M. W.; Maher, J. P.; McCleverty,
J. A.; Ward, M. D. Inorg. Chem. 1995, 34, 4828–4835. For the construction of
a [1]cruciform “carborane-wheeled nanocar” for the exploration of nanome-
chanical motions, see: (u) Morin, J.-F.; Sasaki, T.; Shirai, Y.; Guerrero, J. M.;
Tour, J. M. J. Org. Chem. 2007, 72, 9481–9490.
(3) For reviews on the sensing applications of conjugated polymers, see for
example: (a) Thomas, S. W., III; Joly, G. D.; Swager, T. M. Chem. ReV. 2007,
107, 1339–1386. (b) Achyuthan, K. E.; Bergstedt, T. S.; Chen, L.; Jones, R. M.;
Kumaraswamy, S.; Kushon, S. A.; Ley, K. D.; Lu, L.; McBranch, D.; Mukundan,
H.; Rininsland, F.; Shi, X.; Xia, W.; Whitten, D. G. J. Mater. Chem. 2005, 15,
2648–2656. (c) Leclerc, M.; Ho, H.-A. Synlett 2004, 380–387. (d) Liu, B.; Bazan,
G. C. Chem. Mater. 2004, 16, 4467–4476. (e) Pinto, M. R.; Schanze, K. S.
Synthesis 2002, 1293–1309. (f) Leclerc, M. AdV. Mater. 1999, 11, 1491–1498.
(g) Okada, S.; Peng, S.; Spevak, W.; Charych, D. Acc. Chem. Res. 1998, 31,
229–239. For metal/inorganic nanoparticle-conjugated oligomer/polymer as-
semblies, see: (h) Zotti, G.; Vercelli, B.; Berlin, A. Chem. Mater. 2008, 20,
6509–6516. (i) Bensebaa, F.; Farah, A. A.; Wang, D.; Bock, C.; Du, X.; Kung,
J.; Le Page, Y. J. Phys. Chem. B 2005, 109, 15339–15344. (j) Cassagneau, T.;
Mallouk, T. E.; Fendler, J. H. J. Am. Chem. Soc. 1998, 120, 7848–7859.
(4) For reviews and reports on OLEDs, see: (a) Anderson, S. Chem.sEur.
J. 2001, 7, 4706–4714. (b) Mitschke, U.; Ba¨uerle, P. J. Mater. Chem. 2000, 10,
1471–1507. (c) Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.;
Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bre´das, J. L.;
Lo¨gdlund, M.; Salaneck, W. R. Nature 1999, 397, 121–128. (d) Kraft, A.;
Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998, 37, 402–428.
For a review on OTFTs, see: (e) Dimitrakopoulos, C. D.; Malenfant, P. R. L.
AdV. Mater. 2002, 14, 99–117. For a review on OFETs, see: (f) Horowitz, G.
AdV. Mater. 1998, 10, 365–377.
(5) (a) Lacroix, J. C.; Chane-Ching, K. I.; Maque`re, F.; Maurel, F. J. Am.
Chem. Soc. 2006, 128, 7264–7276. (b) Knoblock, K. M.; Silvestri, C. J.; Collard,
D. M. J. Am. Chem. Soc. 2006, 128, 13680–13681. (c) Cornil, J.; Beljonne, D.;
Calbert, J.-P.; Bre´das, J.-L. AdV. Mater. 2001, 13, 1053–1067. (d) Cornil, J.;
Calbert, J.-P.; Beljonne, D.; Silbey, R.; Bre´das, J.-L. Synth. Met. 2001, 119,
1–6. (e) Schweikart, K.-H.; Hohloch, M.; Steinhuber, E.; Hanack, M.; Lu¨er, L.;
Gierschner, J.; Egelhaaf, H.-J.; Oelkrug, D. Synth. Met. 2001, 121, 1641–1642.
(6) Adronov, A.; Fre´chet, J. M. J. Chem. Commun. 2000, 1701–1710.
(7) (a) Spange, S. Angew. Chem., Int. Ed. 2003, 42, 4430–4432. (b) Calzaferri,
G.; Huber, S.; Maas, H.; Minkowski, C. Angew. Chem., Int. Ed. 2003, 42, 3732–
3758. (c) Lin, V. S.-Y.; Radu, D. R.; Han, M.-K.; Deng, W.; Kuroki, S.; Shanks,
B. H.; Pruski, M. J. Am. Chem. Soc. 2002, 124, 9040–9041.
4676 J. Org. Chem. Vol. 74, No. 13, 2009