C O M M U N I C A T I O N S
Table 1. Optimization of Reaction Conditionsa
In conclusion, we have developed a Pt(II)-catalyzed [3 + 2]
cycloaddition reaction of silyl propadienyl ethers and alkenyl ethers
as the first example of the utilization of allenes as a three-carbon
unit in a transition-metal-catalyzed intermolecular cycloaddition
reaction. This reaction gave synthetically useful functionalized
cyclopentanone derivatives with wide generality, and this process
would be complementary to the well-precedented phosphine-
catalyzed [3 + 2] cycloaddition of electron-deficient allenes with
electrophilic 2π components.
entry
R3Si
ligand
solvent time (h) yield (3 + 4) (%) ratio (3:4)
1
2
3
4
5
6
7
8
TIPS (1a)
-
CH2Cl2
3
0.5
1
1
1
0.5
1
1
73
79
80
78
78
95
93b
44:56
38:62
57:43
37:63
59:41
72:28
92:8
PPh3
P(o-tolyl)3
Acknowledgment. This research was partly supported by a
Grant-in-Aid for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology of Japan.
toluene
THF
EtOAc
TBDPS (1b)
97b c
98:2
,
Supporting Information Available: Preparative methods and
spectral and analytical data for compounds 1-6. This material is
a Yields and product ratios were determined by 1H NMR analyses.
b Isolated yield. c At 0 °C.
References
Table 2. Generality of the Pt(II)-Catalyzed Intermolecular [3 + 2]
Cycloaddition Reaction
(1) For reviews, see: (a) Ma, S. Chem. ReV. 2005, 105, 2829. (b) Murakami,
M.; Matsuda, T. In Modern Allene Chemistry; Krause, N., Hashmi, A. S. K.,
Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp 727-815.
(2) (a) Danheiser, R. L.; Carini, D. J.; Basak, A. J. Am. Chem. Soc. 1981, 103,
1604. (b) Danheiser, R. L.; Kwasigroch, C. A.; Tsai, Y.-M. J. Am. Chem.
Soc. 1985, 107, 7233. (c) Daidouji, K.; Fuchibe, K.; Akiyama, T. Org.
Lett. 2005, 7, 1051. (d) Brawn, R. A.; Panek, J. S. Org. Lett. 2009, 11,
473, and references therein. For a review, see: (e) Masse, C. E.; Panek,
J. S. Chem. ReV. 1995, 95, 1293.
(3) (a) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906. (b) Zhu, G.; Chen,
Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Am. Chem. Soc. 1997, 119,
3836. (c) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535. (d)
Wilson, J. E.; Fu, G. C. Angew. Chem., Int. Ed. 2006, 45, 1426. (e) Xia,
Y.; Liang, Y.; Chen, Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y.;
Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 3470. (f) Cowen, B. J.; Miller,
S. J. J. Am. Chem. Soc. 2007, 129, 10988. (g) Voituriez, A.; Panossian,
A.; Fleury-Bre´geot, N.; Retailleau, P.; Marinetti, A. J. Am. Chem. Soc.
2008, 130, 14030. (h) Garc´ıa Ruano, J. L.; Nu´n˜ez, A., Jr.; Mart´ın, M. R.;
Fraile, A. J. Org. Chem. 2008, 73, 9366. (i) Fang, Y.-Q.; Jacobsen, E. N.
J. Am. Chem. Soc. 2008, 130, 5660. (j) Guo, H.; Xu, Q.; Kwon, O. J. Am.
Chem. Soc. 2009, 131, 6318. For a review, see: (k) Ye, L.-W.; Zhou, J.;
Tang, Y. Chem. Soc. ReV 2008, 37, 1140. Also see ref 1.
(4) For intramolecular [3 + 2] cycloaddition reactions, see: (a) Huang, X.;
Zhang, L. J. Am. Chem. Soc. 2007, 129, 6398. (b) Zhang, G.; Catalano,
V. J.; Zhang, L. J. Am. Chem. Soc. 2007, 129, 11358. (c) Buzas, A.; Gagosz,
F. J. Am. Chem. Soc. 2006, 128, 12614. Also see ref 5e.
(5) For intramolecular [3 + 4] cycloaddition reactions, see: (a) Trillo, B.; Lo´pez,
F.; Gul´ıas, M.; Castedo, L.; Mascaren˜as, J. L. Angew. Chem., Int. Ed. 2008,
47, 951. (b) Craft, D. T.; Gung, B. W. Tetrahedron Lett. 2008, 49, 5931.
(c) Gung, B. W.; Craft, D. T. Tetrahedron Lett. 2009, 50, 2685. (d) Trillo,
B.; Lo´pez, F.; Montserrat, S.; Ujaque, G.; Castedo, L.; Lledo´s, A.;
Mascaren˜as, J. L. Chem.sEur. J. 2009, 15, 3336. (e) Mauleo´n, P.; Zeldin,
R. M.; Gonza´lez, A. Z.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 6348.
(6) There are several examples where part of a 1,2-propadiene unit was involved
in [3 + 2] cycloaddition as a three-carbon unit. See: (a) Yudha, S.;
Kuninobu, Y.; Takai, K. Angew. Chem., Int. Ed. 2008, 47, 9318. (b)
Chaudhuri, R.; Liao, H.-Y.; Liu, R.-S. Chem.sEur. J. 2009, 15, 8895.
(7) (a) Funami, H.; Kusama, H.; Iwasawa, N. Angew. Chem., Int. Ed. 2007,
46, 909. For related works, also see: (b) Lee, J. H.; Toste, F. D. Angew.
Chem., Int. Ed. 2007, 46, 912. (c) Lemie`re, G.; Gandon, V.; Cariou, K.;
Fukuyama, T.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. Org. Lett.
2007, 9, 2207. (d) Lemie`re, G.; Gandon, V.; Cariou, K.; Hours, A.;
Fukuyama, T.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem.
Soc. 2009, 131, 2993.
(8) These intermediates of cationic gold complex were calculated by Malacria
and co-workers: Gandon, V.; Lemiére, G.; Hours, A.; Fensterbank, L.;
Malacria, M. Angew. Chem., Int. Ed. 2008, 47, 7534.
(9) For transition-metal-catalyzed intramolecular [2 + 2] cycloaddition of
allenes, see: (a) Luzung, M. R.; Mauleo´n, P.; Toste, F. D. J. Am. Chem.
Soc. 2007, 129, 12402. (b) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804.
(10) Use of tris(p-tolyl)-or tris(p-methoxyphenyl)phosphine gave results similar to
those for PPh3. Thus, the electronic effect on the selectivity was not large.
a NMR yield. b The product was isolated as a ketone after hydrolysis
of the silyl enol ether moiety. c At -40 °C. d At room temperature.
e The product 5 was obtained as an inseparable mixture of diastereomers
(1.2:1). f A mixture of unidentified products was obtained, and the
formation of [2 + 2] adduct could not be confirmed. g Using 5 mol %
catalyst, 10 mol % phophine, and 5 Å molecular sieves.
JA907633B
9
J. AM. CHEM. SOC. VOL. 131, NO. 45, 2009 16353