Brief Article
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 23 7891
(Promega, Luis Obispo, CA) was added to the cells for measure-
ment of luminescence using a Victor 3 luminometer. The 50%
inhibitory concentration (IC50) was defined as the concentration
that caused a 50% reduction of luciferase activity (relative light
units) compared to virus control wells.
to various anti-HIV-1 compounds: implications for treatment and
postexposure prophylaxis. Antiviral Ther. 2004, 9, 57–65.
(7) Guyader, M.; Emerman, M.; Sonigo, P.; Clavel, F.; Montagnier,
L.; Alizon, M. Genome organization and transactivation of the
human immunodeficiency virus type 2. Nature 1987, 326, 662–
669.
Cytotoxicity Assay. A CytoTox-Glo cytotoxicity assay (Pro-
mega) was used to determine the cytotoxicity of the synthesized
BA derivatives. TZM-bl cells were cultured in the presence of
various concentrations of the compounds for 2 days. Percent of
viable cells was determined by following the protocol provided
by the manufacturer. The 50% cytotoxic concentration (TC50)
was defined as the concentration that caused a 50% reduction of
cell viability.
(8) Kashiwada, Y; Hashimoto, F.; Cosentino, L. M.; Chen, C. H.; Lee,
K. H. Betulinic acid and dihydrobetulinic acid derivatives as potent
anti-HIV agent. J. Med. Chem. 1996, 39, 1016–1017.
(9) Huang, L.; Yuan, X.; Aiken, C.; Chen, C. H. Bifunctional anti-
HIV-1 small molecules with two novel mechanisms of action.
Antimicrob. Agents Chemother. 2004, 48, 663–665.
(10) Huang, L.; Ho, P.; Lee, K. H.; Chen, C. H. Synthesis and anti-HIV
activity of bi-functional betulinic acid derivatives. Bioorg. Med.
Chem. 2006, 14, 2279–2289.
(11) Huang, L.; Chen, C. H. The molecular targets of anti-HIV-1
triterpenes. Curr. Drug Targets: Infect. Disord. 2002, 2, 33–36.
Acknowledgment. This work was supported by the Na-
tional Institute of Allergy and Infectious Diseases (NIAID)
Grant AI-65310 awarded to C.-H.C., National Institutes of
Drug Abuse (NIDA)Grant DA-024589 awarded to L.H., and
in part by Grant AI-077417 from NIAID awarded to K.-H.L.
The authors are grateful to Dr. George Dubay of the Depart-
ment of Chemistry and Dr. Anthony Ribeiro of the NMR
Spectroscopy Center of Duke University for their assistance
on mass and NMR spectroscopy data collection. We also
thank Dominique Soroka for her help on preparation of this
manuscript.
ꢀ
(12) Soler, F.; Poujade, C.; Evers, M.; Carry, J. C.; Henin, Y.; Bousseau,
A.; Huet, T.; Pauwels, R.; De Clercq, E.; Mayaux, J. F.; Le Pecq,
J. B.; Dereu, N. Betulinic acid derivatives: a new class of specific
inhibitors of human immunodeficiency virus type 1 entry. J. Med.
Chem. 1996, 39, 1069–1083.
(13) Hashimoto, F.; Kashiwada, Y.; Cosentino, L. M.; Chen, C. H.;
Garrett, P. E.; Lee, K. H. Anti-AIDS agent;XXVII. Synthesis
and anti-HIV activity of betulinic acid and dihydrobetulinic acid
derivatives. Bioorg. Med. Chem. 1997, 5, 2133–2143.
(14) Yu, D.; Sakurai, Y.; Chen, C. H.; Chang, F. R.; Huang, L.;
Kashiwada, Y.; Lee, K. H. Anti-AIDS agents. 69. Moronic acid
and other triterpene derivatives as novel potent anti-HIV agents. J.
Med. Chem. 2006, 49, 5462–5469.
(15) Huang, L.; Yu, D.; Ho, P.; Lee, K. H.; Chen, C.-H. Synthesis and
anti-HIV activity of bi-functional triterpene derivatives. Lett. Drug
Des. Discovery 2007, 4, 471–478.
(16) Huang, L.; Lai, W. H.; Ho, P.; Chen, C. H. Induction of a
nonproductive conformational change in gp120 by a small mole-
cule HIV-1 entry inhibitor. AIDS Res. Hum. Retroviruses 2007, 23,
28–32.
(17) Lai, W.; Huang, L.; Ho, P.; Li, Z. J.; Montefiori, D.; Chen, C. H.
Betulinic acid derivatives that target gp120 and inhibit multiple
genetic subtypes of HIV-1. Antimicrob. Agents Chemother. 2008,
52, 128–136.
(18) Zhou, J.; Chen, C. H.; Aiken, C. The sequence of the CA-SP1
junction accounts for the differential sensitivity of HIV-1 and SIV
to the small molecule maturation inhibitor 3-O-{30,30-dimethylsuc-
cinyl}betulinic acid. Retrovirology 2004, 1–15.
(19) Li, F.; Zoumplis, D.; Matallana, C.; Kilgore, N. R.; Reddick, M.;
Yunus, A. S.; Adamson, C. S.; Salzwedel, K.; Martin, D. E.;
Allaway, G. P.; Freed, E. O.; Wild, C. T. Determinants of activity
of the HIV-1 maturation inhibitor PA-457. Virology 2006, 356,
217–224.
(20) Martin, D. E.; Salzwedel, K.; Allaway, G. P. Bevirimat: a novel
maturation inhibitor for the treatmentof HIV-1 infection. Antiviral
Chem. Chemother. 2008, 19, 107–113.
(21) Davis, K. L.; Bibollet-Ruche, F.; Li, H.; Decker, J. M.; Kutsch, O.;
Morris, L.; Salomon, A.; Pinter, A.; Hoxie, J. A.; Hahn, B. H.;
Kwong, P. D.; Shaw, G. M. Human immunodeficiency virus type 2
(HIV-2)/HIV-1 envelope chimeras detect high titers of broadly
reactive HIV-1 V3-specific antibodies in human plasma. J. Virol.
2009, 83, 1240–1259.
Supporting Information Available: Spectroscopic and HPLC
analytical data. This material is available free of charge via the
References
(1) Jaffar, S.; Grant, A. D.; Whitworth, J.; Smith, P. G.; Whittle, H.
The natural history of HIV-1 and HIV-2 infections in adults in
Africa: a literature review. Bull. W. H. O. 2004, 82, 462–469.
(2) da Silva; Oliveira, I.; Andersen, A.; Dias, F.; Rodrigues, A.;
Holmgren, B.; Andersson, S.; Aaby, P. Changes in prevalence
and incidence of HIV-1, HIV-2 and dual infections in urban areas
of Bissau, Guinea-Bissau: Is HIV-2 disappearing?. AIDS 2008, 19,
1195–1202.
(3) Wainberg, M. A.; Jeang, K. T. 25 years of HIV-1 research. Progress
and perspectives. BMC Med. 2008, 6, 31.
(4) Witvrouw, M.; Pannecouque, C.; Van Laethem, K.; Desmyter, J.;
De Clercq, E.; Vandamme, A. M. Activity of non-nucleoside
reverse transcriptase inhibitors against HIV-2 and SIV. AIDS
1999, 13, 1477–1483.
(5) Isaka, Y.; Miki, S.; Kawauchi, S.; Suyama, A.; Sugimoto, H.;
Adachi, A.; Miura, T.; Hayami, M.; Yoshie, O.; Fujiwara, T.; Sato, A.
A single amino acid change at Leu-188 in the reverse transcriptase
of HIV-2 and SIV renders them sensitive to non-nucleoside reverse
transcriptase inhibitors. Arch. Virol. 2001, 146, 743–755.
(6) Witvrouw, M.; Pannecouque, C.; Switzer, W. M.; Folks, T. M.;
De Clercq, E.; Heneine, W. Susceptibility of HIV-2, SIV and SHIV