10.1002/chem.201706060
Chemistry - A European Journal
COMMUNICATION
Chemistry II (Second Edition), (Ed.: K. Poeppelmeier), Elsevier,
Amsterdam, 2013, pp. 349-373; e) C. D. Martin, M. Soleilhavoup, G.
Bertrand, Chem. Sci. 2013, 4, 3020-3030; f) Y. Wang, G. H. Robinson,
Inorg. Chem. 2014, 53, 11815-11832; g) M. Soleilhavoup, G. Bertrand,
Acc. Chem. Res. 2015, 48, 256-266; h) K. Chandra Mondal, S. Roy, H.
W. Roesky, Chem. Soc. Rev. 2016, 45, 1080-1111.
dependent DFT (TD-DFT) calculations (Figure S12). The
spectra of the anion 2K and the dianions 2K2 and 3K2 reveal an
absorption peak at around 780 nm. For the radical anion 2K, this
absorption is attributed to HOMO()-LUMO() electron transition
(Figure S13). In terms of both 2K2 and 3K2, they originate from
HOMO()-LUMO() and HOMO()-LUMO() electron transitions,
respectively (Figures S14 and S15). The broad peak at 870 nm
in the spectrum of 3K2 is tentatively assigned to the monoradical
anion impurity, which is confirmed by TD-DFT calculations.
[2]
a) S. L. Hinchley, C. A. Morrison, D. W. H. Rankin, C. L. B. Macdonald,
R. J. Wiacek, A. H. Cowley, M. F. Lappert, G. Gundersen, J. A. C.
Clyburne, P. P. Power, Chem. Commun. 2000, 2045-2046; b) S. L.
Hinchley, C. A. Morrison, D. W. H. Rankin, C. L. B. Macdonald, R. J.
Wiacek, A. Voigt, A. H. Cowley, M. F. Lappert, G. Gundersen, J. A. C.
Clyburne, P. P. Power, J. Am. Chem. Soc. 2001, 123, 9045-9053; c) A.
Armstrong, T. Chivers, M. Parvez, R. T. Boeré, Angew. Chem., Int. Ed.
2004, 43, 502-505; Angew. Chem. 2004, 116, 508–511. d) J.-P.
Bezombes, K. B. Borisenko, P. B. Hitchcock, M. F. Lappert, J. E. Nycz,
D. W. H. Rankin, H. E. Robertson, Dalton Trans. 2004, 1980-1988; e) F.
Biaso, T. Cantat, N. Mézailles, L. Ricard, P. Le Floch, M. Geoffroy,
Angew. Chem., Int. Ed. 2006, 45, 7036-7039; Angew. Chem. 2006, 118,
7194–7197; f) S. Ito, M. Kikuchi, M. Yoshifuji, A. J. Arduengo, T. A.
Konovalova, L. D. Kispert, Angew. Chem., Int. Ed. 2006, 45, 4341-
4345; Angew. Chem. 2006, 118, 4447–4451; g) P. Agarwal, N. A. Piro,
K. Meyer, P. Müller, C. C. Cummins, Angew. Chem., Int. Ed. 2007, 46,
3111-3114; Angew. Chem. 2007, 119, 3171–3174; h) M. Scheer, C.
Kuntz, M. Stubenhofer, M. Linseis, R. F. Winter, M. Sierka, Angew.
Chem., Int. Ed. 2009, 48, 2600-2604; Angew. Chem. 2009, 121, 2638–
2642; i) O. Back, B. Donnadieu, M. von Hopffgarten, S. Klein, R.
Tonner, G. Frenking, G. Bertrand, Chem. Sci. 2011, 2, 858-861; j) S.
Ishida, F. Hirakawa, T. Iwamoto, J. Am. Chem. Soc. 2011, 133, 12968-
12971; k) A. M. Tondreau, Z. Benkő, J. R. Harmer, H. Grützmacher,
Chem. Sci. 2014, 5, 1545-1554.
1K
2K
2K2
3K2
Figure 4. The UV-Vis absorption spectra of 1K, 2K, 2K2 and 3K2 obtained in
THF solutions under nitrogen atmosphere.
[3]
a) O. Back, M. A. Celik, G. Frenking, M. Melaimi, B. Donnadieu, G.
Bertrand, J. Am. Chem. Soc. 2010, 132, 10262-10263; b) O. Back, B.
Donnadieu, P. Parameswaran, G. Frenking, G. Bertrand, Nat. Chem.
2010, 2, 369-373; c) R. Kinjo, B. Donnadieu, G. Bertrand, Angew.
Chem., Int. Ed. 2010, 49, 5930-5933; Angew. Chem. 2010, 122, 6066–
6069; d) T. Beweries, R. Kuzora, U. Rosenthal, A. Schulz, A. Villinger,
Angew. Chem., Int. Ed. 2011, 50, 8974-8978; Angew. Chem. 2011, 123,
9136–9140; e) G. Ménard, J. A. Hatnean, H. J. Cowley, A. J. Lough, J.
M. Rawson, D. W. Stephan, J. Am. Chem. Soc. 2013, 135, 6446-6449;
f) X. Pan, Y. Su, X. Chen, Y. Zhao, Y. Li, J. Zuo, X. Wang, J. Am. Chem.
Soc. 2013, 135, 5561-5564; g) X. Pan, X. Wang, Y. Zhao, Y. Sui, X.
Wang, J. Am. Chem. Soc. 2014, 136, 9834-9837; h) Y. Su, X. Zheng, X.
Wang, X. Zhang, Y. Sui, X. Wang, J. Am. Chem. Soc. 2014, 136, 6251-
6254; i) A. Brückner, A. Hinz, J. B. Priebe, A. Schulz, A. Villinger,
Angew. Chem., Int. Ed. 2015, 54, 7426-7430; Angew. Chem. 2015, 127,
7534–7538; j) A. Hinz, A. Schulz, A. Villinger, Angew. Chem., Int. Ed.
2015, 54, 668-672; Angew. Chem., 2015, 127, 678–682; k) X. Pan, X.
Wang, Z. Zhang, X. Wang, Dalton Trans. 2015, 44, 15099-15102; l) G.
Tan, S. Li, S. Chen, Y. Sui, Y. Zhao, X. Wang, J. Am. Chem. Soc. 2016,
138, 6735-6738; m) S.-s. Asami, S. Ishida, T. Iwamoto, K. Suzuki, M.
Yamashita, Angew. Chem. Int. Ed. 2017, 56, 1658-1662; Angew.
Chem., 2017, 129, 1680–1684; n) G. Tan, J. Li, L. Zhang, C. Chen, Y.
Zhao, X. Wang, Y. Song, Y.-Q. Zhang, M. Driess, Angew. Chem., Int.
Ed. 2017, 56, 12741-12745; Angew. Chem. 2017, 129, 12915–12919.
a) M. Y. Abraham, Y. Wang, Y. Xie, R. J. Gilliard, P. Wei, B. J. Vaccaro,
M. K. Johnson, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, J.
Am. Chem. Soc. 2013, 135, 2486-2488; Selected reviews considering
the applications of NHC ligands: b) D. Bourissou, O.Guerret, F. P.
Gabbaï, G. Bertrand, Chem. Rev. 2000, 100, 39-91; c) S. ez-
Gonz lez, . Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612-3676; d)
J. Chen, Y. Huang, Sci. China Chem. 2016, 59, 251-254; e) E. Peris,
Chem. Rev. 2017, DOI: 10.1021/acs.chemrev.6b00695.
In summary, by utilizing the fluorene and indenofluorene
groups as the structural scaffolds, we successfully isolated the
arsenic-centered radical anions and diradical dianions. The high
stability of these radicals is most probably attributed to partial
electron delocalization over the fluorene and indenofluroene
moieties. Our work provides the first examples of stable arsenic-
centered radical anions synthesized through reduction of the
As=C double bonds of arsaalkenes. Strikingly, 2K2 and 3K2 are
the first heavier Group 15 element-based diradicals featuring
thermally accessible triplet states because of the small singlet-
triplet energy gaps. The synthesis of polyradicals based on the
R′E=CR2 (E = Group 15 elements) building block is currently
undergoing in our laboratory.
Acknowledgements
We thank the National Key R&D Program of China (Grant
2016YFA0300404, X.W.) and the National Natural Science
Foundation of China (Grants 21525102, 21690062, X.W. and
21601082, G.T.) for financial support. We are grateful to the
High Performance Computing Center of Nanjing University for
doing the numerical calculations in this paper on its IBM Blade
cluster system.
[4]
Keywords: Radical • Diradical • Group 15 element • Arsenic •
Triplet state
[5]
S. Demeshko, C. Godemann, R. Kuzora, A. Schulz, A. Villinger, Angew.
Chem., Int. Ed. 2013, 52, 2105-2108; Angew. Chem. 2013, 125, 2159–
2162.
[1]
a) P. P. Power, Chem. Rev. 2003, 103, 789-809; b) F. Breher, Coord.
Chem. Rev. 2007, 251, 1007-1043; c) M. Abe, Chem. Rev. 2013, 113,
7011-7088; d) T. Chivers, J. Konu, in Comprehensive Inorganic
This article is protected by copyright. All rights reserved.