3774
D. J. Lapinsky et al. / Bioorg. Med. Chem. 17 (2009) 3770–3774
4.5. [125I]-1-(4-Azido-3-iodophenyl)-2-pyrrolidin-1-yl-pentan-
1-one ([125I]-6)
described previously23,24 using antiserum 16 generated against
amino acids 42–59 of rDAT or anti-his monoclonal antibody (Sig-
ma) for his-tagged hDAT. Immunoprecipitated samples were sepa-
rated on 4–20% SDS-polyacrylamide gels followed by
autoradiography using HyperfilmTM MP film for 1–4 days at –
80 °C.
Aniline 8 (40
treated with no-carrier-added [125I]-NaI (20
by N-chloro-4-toluenesulfonamide (Chloramine-T) trihydrate
(10 L, 7.0 mM). After 30 min at ambient temperature the mixture
was cooled to À5 °C, and treated sequentially with cold HOAc
(100 L, 3.0 M) and NaNO2 (30 L, 0.5 M). After 15 min, sodium
azide (30 L, 0.5 M) was added and the mixture allowed to warm
to ambient temperature over 20 min. The reaction mixture was
then quenched with Na2S2O5 (10 L, 50 mM) and taken up in a syr-
inge along with a rinse (200 L) of the vessel with HPLC mobile
lL, 5.0 mM) in NaOAc buffer (pH 4.0; 0.2 M) was
lL, 1.67 mCi) followed
l
Acknowledgments
l
l
l
This work was funded by a Hunkele Dreaded Disease Award
(D.J.L.), the Mylan School of Pharmacy at Duquesne University
(D.J.L.), and NIH Grants DA16604 (C.K.S.) and DA15175 (R.A.V.).
We thank NIDA Drug Supply for contribution of certain nonradio-
active DAT ligand compounds.
l
l
phase: MeOH (16.5%), CH3CN (16.5%) and an aqueous solution
(67%) containing Et3N (2.1% v/v) and HOAc (2.8% v/v). The HPLC
system was equipped with a UV absorbance detector (280 nm), a
flow-through radioactivity detector, and a Waters C-18 Nova-Pak
References and notes
column (radial compression module, 8 Â 100 mm, 4
lm). Using a
flow rate of 3 mL/min, radioactive material (tR = 20.0 min) corre-
sponding to 6 was resolved from non-radioactive and radioactive
side products. [125I]-6 was collected (6.5 mL), diluted to 30 mL with
distilled water, and passed through an activated (EtOH/water) so-
lid phase extraction cartridge (Waters Sep-Pak Light t-C-18) that
was flushed with water (2.0 mL) to remove residual salts, and then
with air. The cartridge retained >98% of the radioactivity and then
was fully eluted with EtOH (1.5 mL) to give [125I]-6 (0.33 mCi; 20%)
as a concentrated solution. The material co-eluted with 6 under the
HPLC conditions described above and displayed 99% radiochemical
purity. After 25 days of storage at À20 °C in the dark, 92% radio-
chemical purity was observed by HPLC. The radioligand was
accompanied by a single, less lipophilic, decomposition product
1. Kampman, K. M. Addict. Sci. Clin. Practice 2008, 4, 28.
2. Fleckenstein, A. E.; Volz, T. J.; Riddle, E. L.; Gibb, J. W.; Hanson, G. R. Annu. Rev.
Pharmacol. Toxicol. 2007, 47, 681.
3. Woolverton, W. L.; Johnson, K. M. Trends Pharmacol. Sci. 1992, 13, 193.
4. Runyon, S. P.; Carroll, F. I. Curr. Top. Med. Chem. 2006, 6, 1825.
5. Reith, M. E. A.; Berfield, J. L.; Wang, L.; Ferrer, J. V.; Javitch, J. A. J. Biol. Chem.
2001, 276, 29012.
6. Newman, A. H.; Kulkarni, S. S. Med. Res. Rev. 2002, 22, 1.
7. Ukairo, O. T.; Bondi, C. D.; Newman, A. H.; Kulkarni, S. S.; Kozikowski, A. P.; Pan,
S.; Surratt, C. K. J. Pharmacol. Exp. Ther. 2005, 314, 575.
8. Murthy, V.; Davies, H. M. L.; Hedley, S. J.; Childers, S. R. Biochem. Pharmacol.
2007, 74, 336.
9. Chen, Y.; Hajipour, A. R.; Sievert, M. K.; Arbabian, M.; Ruoho, A. E. Biochemistry
2007, 46, 3532.
10. Newman, A. H.; Cha, J. H.; Cao, J.; Kopajtic, T.; Katz, J. L.; Parnas, M. L.; Vaughan,
R.; Lever, J. R. J. Med. Chem. 2006, 49, 6621.
11. Lever, J. R.; Zou, M.-F.; Parnas, M. L.; Duval, R. A.; Wirtz, S. E.; Justice, J. B.;
Vaughan, R. A.; Newman, A. H. Bioconjugate Chem. 2005, 16, 644.
12. Zou, M. F.; Kopajtic, T.; Katz, J. L.; Newman, A. H. J. Med. Chem. 2003, 46, 2908.
13. Zou, M. F.; Kopajtic, T.; Katz, J. L.; Wirtz, S.; Justice, J. B.; Newman, A. H. J. Med.
Chem. 2001, 44, 4453.
14. Agoston, G. E.; Vaughan, R.; Lever, J. R.; Izenwasser, S.; Terry, P. D.; Newman, A.
H. Bioorg. Med. Chem. Lett. 1997, 7, 3027.
15. Kline, R. H.; Eshleman, A. J.; Wright, J.; Eldefrawi, M. E. J. Med. Chem. 1994, 37,
2249.
16. Carroll, F. I.; Gao, Y.; Abraham, P.; Lewin, A. H.; Lew, R.; Patel, A.; Boja, J. W.;
Kuhar, M. J. J. Med. Chem. 1992, 35, 1813.
17. Dutta, A. K.; Fei, X. S.; Vaughan, R. A.; Gaffaney, J. D.; Wang, N. N.; Lever, J. R.;
Reith, M. E. A. Life Sci. 2001, 68, 1839.
18. Cao, J.; Lever, J. R.; Kopajtic, T.; Katz, J. L.; Pham, A. T.; Holmes, M. L.; Justice, J.
B.; Newman, A. H. J. Med. Chem. 2004, 47, 6128.
19. Husbands, S. M.; Izenwasser, S.; Loeloff, R. J.; Katz, J. L.; Bowen, W. D.; Vilner, B.
J.; Newman, A. H. J. Med. Chem. 1997, 40, 4340.
(8%). A specific radioactivity of 1946 mCi/lmol was determined
for [125I]-6 using HPLC methods to determine the mass associated
with the absorbance of carrier in a sample of known radioactivity.
The UV response for non-radioactive 6 was linear (r2 = 0.99) for a
five-point standard curve ranging from 38 to 450 pmol. The major
non-radioactive products observed during HPLC purification were
tentatively assigned as the azide (tR = 6.2 min) and the chloroazide
(tR = 13.0 min) based upon HPLC analyses of model reactions.
These were performed as described above without radioiodine. In
brief, aniline 8 was treated with only NaNO2 and NaN3 to produce
the azide, and then again with NaNO2, NaN3 and varying amounts
of Chloramine-T to allow identification of chloroazide.
20. Berger, S. P.; Martenson, R. E.; Laing, P.; Thurkauf, A.; Decosta, B.; Rice, K. C.;
Paul, S. M. Mol. Pharmacol. 1991, 39, 429.
21. Sallee, F. R.; Fogel, E. L.; Schwartz, E.; Choi, S. M.; Curran, D. P.; Niznik, H. B. FEBS
Lett. 1989, 256, 219.
22. Grigoriadis, D. E.; Wilson, A. A.; Lew, R.; Sharkey, J. S.; Kuhar, M. J. J. Neurosci.
1989, 9, 2664.
23. Parnas, M. L.; Gaffaney, J. D.; Zou, M. F.; Lever, J. R.; Newman, A. H.; Vaughan, R.
A. Mol. Pharmacol. 2008, 73, 1141.
24. Vaughan, R. A.; Sakrikar, D. S.; Parnas, M. L.; Adkins, S.; Foster, J. D.; Duval, R. A.;
Lever, J. R.; Kulkarni, S. S.; Newman, A. H. J. Biol. Chem. 2007, 282, 8915.
25. Vaughan, R. A.; Agoston, G. E.; Lever, J. R.; Newman, A. H. J. Neurosci. 1999, 19,
630.
26. Rose, M. E.; Grant, J. E. Ann. Clin. Psychiatry 2008, 20, 145.
27. Schmitt, K. C.; Zhen, J.; Kharkar, P.; Mishra, M.; Chen, N.; Dutta, A. K.; Reith, M.
E. A. J. Neurochem. 2008, 107, 928.
28. Meltzer, P. C.; Butler, D.; Deschamps, J. R.; Madras, B. K. J. Med. Chem. 2006, 49,
1420.
29. Perrine, D. M.; Ross, J. T.; Nervi, S. J.; Zimmerman, R. H. J. Chem. Educ. 2000, 77,
1479.
4.6. DAT photoaffinity labeling
LLC-PK1 cells expressing rDAT and HEK-293 cells expressing
6Xhis hDAT were grown to 90% confluency in 6-well plates. Med-
ium was removed and 1 ml of [125I]-6 prepared in KRH buffer was
added to a final concentration of 30 nM for 1 h at 4 °C. For pharma-
cological displacement, 100
l
M (À)-cocaine was included in the
binding mixture. Cells were irradiated with shortwave ultraviolet
light (254 nm, Fotodyne UV Lamp model 3-6000) for 45 s at a dis-
tance of 15–20 mm to photoactivate the radioligand. Medium was
removed and the cells were washed twice with 1 ml of ice-cold
KRH buffer. The photolabeled cells were lysed with 0.6 ml/well
RIPA buffer (50 mM NaF, 2 mM EDTA, 125 mM Na3PO4, 1.25% Tri-
ton X-100, and 1.25% sodium deoxycholate) for 15 min at 0 °C, fol-
lowed by centrifugation at 20,000 g for 15 min at 4 °C. The
supernatant fraction was transferred to clean tubes for immuno-
precipitation. Lysates were subjected to immunoprecipitation as
30. Vaughan, R. A.; Parnas, M. L.; Gaffaney, J. D.; Lowe, M. J.; Wirtz, S.; Pham, A.;
Reed, B.; Dutta, S. M.; Murray, K. K.; Justice, J. B. J. Neurosci. 2005, 143, 33.
31. Vodovozova, E. L. Biochemistry (Moscow) 2007, 72, 1.
32. Cheng, Y.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.