T. Hyodo et al. / Tetrahedron Letters 50 (2009) 3547–3549
3549
3. Montero, A.; Mann, E.; Herradón, B. Eur. J. Org. Chem. 2004, 3063–3073.
4. Sugawara, K.; Hashiyama, T. Tetrahedron Lett. 2007, 48, 3723–3726.
5. Norsikian, S.; Lubineau, A. Org. Biomol. Chem. 2005, 3, 4089–4094.
1) DIBAL
–78 °C
R3
R3
6. Trost, B. M.; King, S. A.; Schmidt, T. J. Am. Chem. Soc. 1989, 111, 5902–5915.
7. (a) RajanBabu, T. V. J. Org. Chem. 1985, 50, 3642–3644; (b) Dunkerton, L. V.;
Euske, J. M.; Serino, A. J. Carbohydr. Res. 1987, 171, 89–107; (c) Curran, D. P.;
Suh, Y.-G. Carbohydr. Res. 1987, 171, 161–191; (d) Brakta, M.; Lhoste, P.; Sinou,
D. J. Org. Chem. 1989, 54, 1890–1896; (e) Engelbrecht, G. J.; Holzapfel, C. W.
Heterocycles 1991, 32, 1267–1272; (f) Brescia, M. R.; Shimshock, Y. C.; DeShong,
P. J. Org. Chem. 1997, 62, 1257–1263.
8. (a) Dorgan, B. J.; Jackson, R. F. W. Synlett 1996, 859–861; (b) Chapleur, Y.;
Grapsas, Y. Carbohydr. Res. 1985, 141, 153–158; (c) Danishefsky, S. J.;
Armistead, D. M.; Wincott, F. E.; Selnick, H. G.; Hungate, R. J. Am. Chem. Soc.
1989, 111, 2967–2980; (d) Valverde, S.; Bernabé, M.; Garcia-Ochoa, S.; Gómez,
A. M. J. Org. Chem. 1990, 55, 2294–2298; (e) Valverde, S.; Bernabé, M.; Gómez,
A. M.; Puebla, P. J. Org. Chem. 1992, 57, 4546–4550.
9. Bussolo, V. D.; Caselli, M.; Pineschi, M.; Crotti, P. Org. Lett. 2003, 5, 2173–2176.
10. (a) Negishi, E.; Liu, F. In Metal-catalyzed Cross-coupling Reactions; Diederich, F.,
Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998. Chapter 1; (b) Negishi, E.. In
Handbook of Organopalladium Chemistry for Organic Synthesis; Wiley-VCH:
Weinheim, 2002; Vol. 1; (c) Kar, A.; Argade, N. P. Synthesis 2005, 2995–3022.
11. Kiyotsuka, Y.; Acharya, H. P.; Katayama, Y.; Hyodo, T.; Kobayashi, Y. Org. Lett.
2008, 10, 1719–1722.
O
OPiv
OH OH
C5H11
C5H11
2) NaBH4
MeOH
16a,d
18a,d
OH
R2
1) TBSCl, Imid.
DMF, –20 °C
2) O3, MeOH
then NaBH4
OTBS
19a, [α]D23 –12(
c
0.54, CHCl3)
1.42, CHCl3)
lit., [α]D26 –11.41 (
for ( )-enantiomer
19d, [α]D29 –18(
0.47, CHCl3)
lit., [α]D23 +14.6 (
1.03, CHCl3)
for ( )-enantiomer
c
S
c
c
R
Scheme 4. Transformation of 16a and 16d to the known compounds. R3 for 16, 18,
19: a, Et; d, Ph.
12. Kiyotsuka, Y.; Kobayashi, Y. Tetrahedron Lett. 2008, 49, 7256–7259.
13. (a) Comely, A. C.; Eelkema, R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc.
2003, 125, 8714–8715; (b) Babu, R. S.; O’Doherty, G. A. J. Am. Chem. Soc. 2003,
125, 12406–12407.
14. (a) Kobayashi, Y.; Kusakabe, M.; Kitano, Y.; Sato, F. J. Org. Chem. 1988, 53, 1586–
1587; (b) Kusakabe, M.; Kitano, Y.; Kobayashi, Y.; Sato, F. J. Org. Chem. 1989, 54,
2085–2091.
products 16b and 16c, respectively, in high yield (entries 5 and 6).
No isomers were detected as well. However, t-Bu2CuMgBrꢀMgBr2
afforded a complex mixture (no entry given). Next, the Ph reagents
of PhCuꢀMgBr2 and Ph2CuMgBrꢀMgBr2 were subjected to the reac-
tion to afford 16d in good yields (entries 7 and 8). The structure of
16d was confirmed by transformation to the known alcohol 19d21
as shown in Scheme 4. Reaction with sterically more hindered re-
agents given in entries 9 and 10 proceeded without a hitch to af-
ford 16e and 16f, respectively.
In a similar way, reaction of the other picolinate 15 with the Me,
Et, and Ph copper reagents at ꢁ20 °C in THF was examined under
the conditions established above to afford the corresponding prod-
ucts 17a,b,d regio- and stereoselectively in high yields: cf. 50–74%
yields for the BTZ ether 1.8e Further experimentation with o-
MeC6H4 and o-MeOC6H4 reagents furnished the products 17e and
17f efficiently.
15. Spectral data: Compound 10: ½a D23
ꢂ
+79 (c 0.65, CHCl3); 1H NMR (300 MHz,
CDCl3) d 0.85 (t, J = 6.5 Hz, 3H), 1.24 (s, 9H), 1.20–1.74 (m, 8H), 4.10 (dt, J = 9,
2 Hz, 1H), 5.54 (dq, J = 9, 1.5 Hz, 1H), 5.87 (ddd, J = 10, 3, 2 Hz, 1H), 6.12 (dt,
J = 10, 1 Hz, 1H), 6.33 (br s, 1H), 7.53 (ddd, J = 8, 5, 1 Hz, 1H), 7.89 (dt, J = 8, 2 Hz,
1H), 8.17 (dt, J = 8, 1 Hz, 1 H), 8.81 (dm, J = 5 Hz, 1H); 13C NMR (75 MHz, CDCl3)
d 14.0 (ꢁ), 22.6 (+), 24.7 (+), 27.1 (ꢁ), 31.4 (+), 31.5 (+), 39.0 (+), 70.3 (ꢁ), 70.7
(ꢁ), 88.0 (ꢁ), 125.5 (ꢁ), 126.4 (ꢁ), 127.3 (ꢁ), 131.1 (ꢁ), 137.1 (ꢁ), 147.6 (+),
150.1 (ꢁ), 164.7 (+), 177.4 (+); HRMS (FAB) calcd for C21H30NO5 [(M+H)+]
376.2124, found 376.2128. Compound 15: ½a D25
ꢂ
+49 (c 1.20, CHCl3); 1H NMR
(300 MHz, CDCl3) d ꢁ0.02 (s, 6H), 0.83 (s, 9H), 1.22 (s, 9H), 3.79–3.85 (m, 2H),
4.21 (dt, J = 10, 4 Hz, 1H), 5.72 (dq, J = 10, 1.5 Hz, 1H), 5.87 (ddd, J = 10, 3, 2 Hz,
1H), 6.14 (d, J = 10 Hz, 1H), 6.36 (br s, 1H), 7.51 (ddd, J = 8, 4.5, 1 Hz, 1H), 7.87
(dt, J = 1.5, 8 Hz, 1H), 8.16 (dt, J = 8, 1 Hz, 1H), 8.79 (dm, J = 4.5 Hz, 1H); 13C
NMR (75 MHz, CDCl3) d ꢁ5.4 (ꢁ), 5.3 (ꢁ), 18.4 (+), 25.9 (ꢁ), 27.1 (ꢁ), 39.0 (+),
62.7 (+), 66.5 (ꢁ), 71.7 (ꢁ), 88.1 (ꢁ), 125.1 (ꢁ), 126.4 (ꢁ), 127.2 (ꢁ), 130.5 (ꢁ),
137.1 (ꢁ), 147.7 (+), 150.1 (ꢁ), 164.5 (+), 177.3 (+).
16. Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc.
1996, 118, 2521–2522.
In summary, allylic substitution with the picolinoxy leaving
group was established to be an efficient method to install alkyl
and aryl groups on the pyran ring. The groups investigated were
Me, Et, i-Pr, Ph, o-MeC6H4, and o-MeOC6H4, and these results would
be a good guideline for designing substituted pyrans.
17. (a) Li, M.; Scott, J.; O’Doherty, G. A. Tetrahedron Lett. 2004, 45, 1005–1009; (b)
Zhou, M.; O’Doherty, G. A. Org. Lett. 2006, 8, 4339–4342; (c) Zhou, M.;
O’Doherty, G. A. J. Org. Chem. 2007, 72, 2485–2493.
18. (a) Harris, J. M.; Keranen, M. D.; O’Doherty, G. A. J. Org. Chem. 1999, 64, 2982–
2983; (b) Harris, J. M.; Keränen, M. D.; Nguyen, H.; Young, V. G.; O’Doherty, G.
A. Carbohydr. Res. 2000, 328, 17–36.
19. Ihara, M.; Takahashi, M.; Taniguchi, N.; Yasui, K.; Fukumoto, K. J. Chem. Soc.,
Perkin Trans. 1 1989, 897–903.
Acknowledgments
20. Typical procedure: To an ice-cold suspension of CuBrꢀMe2S (252 mg, 1.23 mmol)
in THF (10 mL) was added EtMgBr (2.34 mL, 1.05 M in THF, 2.46 mmol)
dropwise. After 30 min of stirring, the resulting mixture was cooled to ꢁ20 °C,
and a solution of 10 (230 mg, 0.613 mmol) in THF (5 mL) was added to the
mixture dropwise. The resulting mixture was stirred at ꢁ20 °C for 1 h, and
diluted with hexane and saturated NH4Cl with vigorous stirring. The crude
product thus obtained was purified by chromatography on silica gel (hexane/
This work was supported by a Grant-in-Aid for Scientific Re-
search from the Ministry of Education, Science, Sports, and Culture,
Japan.
References and notes
EtOAc) to afford 16a (168 mg, 97%): ½ ꢂ
a 2D2 +86 (c 0.92, CHCl3); 1H NMR
(300 MHz, CDCl3) d 0.88 (t, J = 7 Hz, 3H), 0.99 (t, J = 7 Hz, 3H), 1.21 (s, 9H), 1.20–
1.62 (m, 10H), 1.89–1.98 (m, 1H), 4.25 (br s, 1H), 5.68 (d, J = 11 Hz, 1H), 5.76
(ddt, J = 11, 5, 2 Hz, 1H), 6.01 (s, 1H); 13C NMR (75 MHz, CDCl3) d 11.3 (ꢁ), 14.1
(ꢁ), 22.6 (+), 24.5 (+), 26.4 (+), 27.1 (ꢁ), 31.9 (+), 34.8 (+), 39.0 (+), 39.4 (ꢁ), 69.3
(ꢁ), 94.2 (ꢁ), 125.3 (ꢁ), 128.2 (ꢁ), 177.3 (+).
1. (a) Thorn, S. N.; Gallagher, T. Synlett 1996, 185–187; (b) Nelson, T. D.; Rosen, J.
D.; Smitrovich, J. H.; Payack, J.; Craig, B.; Matty, L.; Huffman, M. A.; McNamara,
J. Org. Lett. 2005, 7, 55–58; (c) Canac, Y.; Levoirier, E.; Lubineau, A. J. Org. Chem.
2001, 66, 3206–3210, and references cited therein.
2. (a) Gruner, S. A. W.; Locardi, E.; Lohof, E.; Kessler, H. Chem. Rev. 2002, 102, 491–
514; (b) Montero, A.; Mann, E.; Herradón, B. Tetrahedron Lett. 2005, 46, 401–
405.
21. Maruoka, K.; Ooi, T.; Nagahara, S.; Yamamoto, H. Tetrahedron 1991, 47, 6983–
6998.