Article
J. Agric. Food Chem., Vol. 58, No. 13, 2010 7699
that dietary STG inhibited the development of colonic precancer-
ous lesions in vivo. The beneficial effect of STG might be
attributed to the antioxidative property (31). Our previous studies
reported that sesaminol triglucoside (STG) converted to ST-2 by
intestinal microbiota. The concentrations of ST-2 in the intestines
(cecum, colon, and plasma) were higher than other tissues in rat.
Furthermore, our results of the measurement of tissues distribu-
tion, anti-inflammatory and antioxidative activities clearly de-
monstrated that ST-2 played a significant role.
Phytoestrogens are plant-derived compounds that can interact
with estrogen receptors (ER) and exhibit estrogenic/antiestro-
genic activities. Phytoestrogens can bind to ER and have a higher
affinity for ERβ than for ERR (32). Penttinen-Damdimopou-
lou (33) reported that diet could modulate E2-induced ER-
mediated responses in vivo. The dietary sources of lignans and
isoflavones could modulate estrogen signaling in vivo. The
expression of ERβ was significantly increased in prostate and
uterus with a diet rich in sesame pericarp (30%) (34). According
to the present results, we detected that the metabolite of STG
(ST2) was endowed with estrogenic activity, which was likely to
be exerted through the contribution of ER-dependent pathways.
In comparison with ENL, ST2 had similar estrogenicity. This
study supports the notion that dietary supplementation with STG
be converted to ST2 which exhibits higher estrogenic activity than
STG.
(10) Kuriyama, S.; Murui, T. Scavenging of hydroxy radicals by lignan
glucosides in germinated sesame seeds. Nippon Nougei Kagaku Kaishi
1995, 69, 703–705.
(11) Jan, K. C.; Hwang, L. S.; Ho, C. T. Biotransformation of sesaminol
triglucoside to mammalian lignans by intestinal microbiota. J. Agric.
Food Chem. 2009, 57, 6101–6106.
(12) Katsuzaki, H.; Kawakishi, S.; Osawa, T. Sesaminol glucosides in
sesame seeds. Phytochemistry 1994, 35, 773–776.
(13) Axelson, M.; Sjovall, J.; Gustafsson, B. E.; Setchell, K. D. Origin of
lignans in mammals and identification of a precursor from plants.
Nature 1982, 298, 659–660.
(14) Borriello, S. P.; Setchell, K. D.; Axelson, M.; Lawson, A. M.
Production and metabolism of lignans by the human fecal flora.
J. Appl. Bacteriol. 1985, 58, 37–43.
(15) Setchell, K. D.; Lawson, A. M.; Mitchell, F. L.; Adlercreutz, H.;
Kirk, D. N.; Axelson, M. Lignans in man and in animal species.
Nature 1980, 287, 740–742.
(16) Talavera, S.; Felgines, C.; Texier, O.; Besson, C.; Gil-Izquierdo, A.;
Lamaison, J. L.; Remesy, C. Anthocyanin metabolism in rats and
their distribution to digestive area, kidney, and brain. J. Agric. Food
Chem. 2005, 18, 3902–3908.
(17) Hsiu, S. L.; Tsao, C. W.; Tsai, Y. C.; Ho, H. J.; Chao, P. D.
Determinations of morin, quercetin and their conjugate metabolites
in serum. Biol. Pharm. Bull. 2001, 24, 967–969.
(18) de Boer, V. C.; Dihal, A. A.; van der Woude, H.; Arts, I. C.;
Wolffram, S.; Alink, G. M.; Rietjens, I. M.; Keijer, J.; Hollman, P. C.
Tissue distribution of quercetin in rats and pigs. J. Nutr. 2005, 135,
1718–1725.
In summary, STG itself only has limited bioactivities, but when
it is converted to physiologically beneficial metabolites by
intestinal microflora, they may exert antioxidative, anti-inflam-
matory, and estrogenic activities. This further supports the
potential of using dietary sesame as a disease preventive func-
tional food.
(19) Noami, M.; Igarashi, K.; Kasuya, F.; Ohta, M.; Kanamori-Kataoka,
M.; Seto, Y. Study on the analysis of capsaicin glucuronide in rat urine
by liquid chromatography-mass spectrometry after enzymatic hydro-
lysis. J. Health Sci. 2006, 52, 660–665.
(20) Prior, R. L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.;
Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R.
Assays for hydrophilic and lipophilic antioxidant capacity (oxygen
radical absorbance capacity (ORACFL)) of plasma and other
biological and food samples. J. Agric. Food Chem. 2003, 51, 3273–
3279.
LITERATURE CITED
€ € €
(1) Rowland, I.; Faughnan, M.; Hoey, L.; Wahala, K.; Williamson, G.;
(21) Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.;
Rice-Evans, C. Antioxidant activity applying an improved ABTS
radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26,
1231–1237.
Cassidy, A. Bioavailability of phytoestrogens. Br. J. Nutr. 2003, 89,
S45–S58.
(2) Axelson, M.; Setchell, K. D. R. The excretion of lignans in rats -
evidence for an intestinal bacterial source for this new group of
compounds. FEBS Lett. 1981, 123, 337–342.
(22) Durocher, Y.; Perret, S.; Thibaudeau, E.; Gaumond, M. H.; Kamen,
A.; Stocco, R.; Abramovitz, M. A reporter gene assay for high-
throughput screening of G-protein-coupled receptors stably or
transiently expressed in HEK293 EBNA cells grown in suspension
culture. Anal. Biochem. 2000, 284, 316–326.
€ € €
(3) Heinonen, S.; Nurmi, T.; Liukkonen, K.; Poutanen, K.; Wahala, K.;
Deyama, T.; Nishibe, S.; Adlercreutz, H. In vitro metabolism of plant
lignans: new precursors of mammalian lignans enterolactone and
enterodiol. J. Agric. Food Chem. 2001, 49, 3178–3186.
(23) Cheng, W. Y.; Kuo, Y. H.; Huang, C. J. Isolation and identi-
fication of novel estrogenic compounds in yam tuber (Dioscorea
alata Cv. Tainung No. 2). J. Agric. Food Chem. 2007, 55, 7350–
7358.
(4) Penalvo, J. L.; Haajanen, K. M.; Botting, N.; Adlercreutz, H.
Quantification of lignans in food using isotope dilution gas chro-
matography/mass spectrometry. J. Agric. Food Chem. 2005, 53,
9342–9347.
(24) Hong, Y. H.; Chao, W. W.; Chen, M. L.; Lin, B. F. Ethyl acetate
extracts of alfalfa (Medicago sativa L.) sprouts inhibit lipopolysac-
charide-induced inflammation in vitro and in vivo. J. Biomed. Sci.
2009, 16, 64.
(5) Penalvo, J. L.; Heinonen, S. M.; Aura, A. M.; Adlercreutz, H.
Dietary sesamin is converted to enterolactone in humans. J. Nutr.
2005, 135, 1056–1062.
(6) Valsta, L. M.; Kilkkinen, A.; Mazur, W.; Nurmi, T.; Lampi, A. M.;
Ovaskainen, M. L.; Korhonen, T.; Adlercreutz, H.; Pietinen, P.
Phyto-oestrogen database of foods and average intake in Finland.
Br. J. Nutr. 2003, 89, S31–S38.
(25) Jan, K. C.; Hwang, L. S.; Ho, C. T. Tissue distribution and
elimination of sesaminol triglucoside and its metabolites in rat.
Mol. Nutr. Food Res. 2009, 53, 815–825.
(7) Milder, I. E.; Feskens, E. J.; Arts, I. C.; Bueno de Mesquita, H. B.;
Hollman, P. C.; Kromhout, D. Intake of the plant lignans secoiso-
lariciresinol, matairesinol, lariciresinol, and pinoresinol in Dutch
men and women. J. Nutr. 2005, 135, 1202–1207.
(26) Wang, L. Q.; Meselhy, M. R.; Li, Y.; Qin, G. W.; Hattori, M.
Human intestinal bacteria capable of transforming secoisolaricir-
esinol diglucoside to mammalian lignans, enterodiol and enterolac-
tone. Chem. Pharm. Bull. 2000, 48, 1606–1610.
(27) Larson, R. A. The antioxidants of higher plants. Phytochemistry
1988, 27, 969–978.
(8) Katsuzaki, H.; Osawa, T.; Kawakishi, S. Chemistry and antioxida-
tive activity of lignan glucosides in sesame seed. In Food Phytochem-
icals for Cancer Prevention II; Ho, C. T., Osawa, T., Huang, T. Rosen,
R. T., Eds.; ACS Symposium Series Vol 547; American, Chemical
Society: Washington, D.C, 1994; pp 275-280.
(28) Rice-Evans, C. S.; Miller, N. J.; Paganga, G. Structure-antioxidant
activity relationships of flavonoids and phenolic acids. Free Radic.
Biol. Med. 1996, 20, 933–956.
(9) Miyake, Y.; Fukumoto, S.; Okada, M.; Sakaide, K.; Nakamura, Y.;
Osawa, T. Antioxidative catechol lignans converted from sesamin
and sesaminol triglucoside by culturing with Aspergillus. J. Agric.
Food Chem. 2005, 53, 22–27.
(29) Jeng, K. C.; Hou, R. C.; Wang, J. C.; Ping, L. I. Sesamin inhibits
lipopolysaccharide-induced cytokine production by suppression
of p38 mitogen-activated protein kinase and nuclear factor-κB.
Immunol. Lett. 2005, 97, 101–106.