Sureshbabu et al.
JOCArticle
Among these compounds, oligoureas and ureidopeptides
have been extensively studied as inhibitors and antagonists
of various enzymes and receptors as well as important struc-
tural motifs in de novo design.5,6 Isoelectronic replacement of
the oxygen atom of the uredio bond results in another
biologically, medicinally, and structurally relevant linkage,
the thioureido bond. The importance of the thioureido group
in conferring the required potency to bioactive molecules can
be seen in its insertion into many medicinally valuable com-
pounds. Many of the substituted thioureas are active as anti-
HIV,7 antiviral,8 antimicrobial,9 antituberculor,10 antitu-
mor,11 antihypertensive,12 and anticarcinogenic agents.13
The high acidity of the -NH-CS-NH- protons, in correla-
tion with strong hydrogen bonding property has been
exploited in the design of self-assembling macromolecules
and stabilization of secondary structures.14 Thiourea moieties
FIGURE 1. Amino/peptide acid ester derived isothiocyanates well
known in the literature.21,22
embedded into macromolecules like pseudo-oligosaccharides
provide anchoring points for hydrogen bonding recognition
of complementary functional groups with specific orienta-
tion.15 They are also used as catalysts for asymmetric organic
synthesis.16-19 RGD peptides and lysine derivatives functio-
nalized with thioureido moieties have been used to facilitate
cell adhesion, and as transfecting agents.20
Substituted thioureas (both symmetrical and unsymme-
trical, Figure 1) are largely prepared by two main routes:
(i) coupling of primary/secondary amines in the presence of
CS2,23 thiophosgene,24 or its equivalent,25 triphenylpho-
sphine thiocyanogen,26 thiourea, or H2S on substituted
guanidines27 [several thiocarbonylating agents such as
1-(methyldithiocarbonyl)imidazole,28 1,10-thiocarbonyldii-
midazole (TDI),29 di-2-pyridyl thionocarbonate (DPT),30
thiocarbonyl(bis-benzotriazole),31 1,3-diphenyl thiourea,32
and molybdenum xanthate complexes33 have also been
developed] and (ii) straightforward reaction of amines with
isothiocyanates, which is widely used.34
(5) (a) Nowick, J. S. Acc. Chem. Res. 1999, 32, 287–296. (b) Nowick, J. S.
Acc. Chem. Res. 2008, 41, 1319–1330.
(6) For a variety of ureidopeptidomimetics applications, see: (a) Esler,
W. P.; Kimberly, W. T.; Ostaszewski, B. L.; Ye, W.; Dichl, T. S.; Selkoe, D.
J.; Wolfe, M. S. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 2720–2725. (b) Kick,
K. E.; Ellman, J. A. J. Med. Chem. 1995, 38, 1427–1430. (c) Lam, P. Y.;
Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, Y.; Bacheler, L. T.; Meek,
J. L.; Otto, M. J.; Rayner, M. M.; Wong, Y. N.; Chang, C.-H.; Weber, P. C.;
Jackson, D. A.; Sharpe, T. R.; Erickson-Viitanen, S. Science 1994, 263, 380–
384. (d) Navia, M. A.; Fitzgerald, M. D. P.; Mckeever, B. M.; Leu, C.-T.;
Heimbach, J. C.; Herber, W. K.; Sigal, I. S.; Darke, P. L.; Spronger, J. P.
Nature (London) 1989, 337, 615–620. (e) Broadbridge, R. J.; Sharma, R. P.;
Akhtar, M. Chem. Commun. 1998, 1449–1450. (f ) Dales, N. A.; Bohacek, R.
S.; Satyshur, K. A.; Rich, D. H. Org. Lett. 2001, 3, 2313–2316.
(7) (a) Vig, R.; Mao, C.; Venkatachalam, T. K.; Tuel-Ahlgren, L.;
Sudbeck, E. A.; Uckun, F. M. Bioorg. Med. Chem. 1998, 6, 1789–1797.
(b) Mao, C.; Vig, R.; Venkatachalam, T. K.; Sudbeck, E. A.; Uckun, F. M.
Bioorg. Med. Chem. Lett. 1998, 8, 2213–2218. (c) Venkatachalam, T. K.;
Mao, C.; Uckun, F. M. Biochem. Pharmacol. 2004, 67, 1933-1946 and
references cited therein.
Isothiocyanates are versatile synthetic intermediates whose
strong electrophilicity enables them to readily take part in
nucleophilic addition and cycloaddition reactions. Apart from
being precursors for thioureas, they are also starting materials
for a broad spectrum of compounds such as thiohydantoins,
sulfur heterocycles, viz., mercaptoimidazoles, thioquinazolines,
thiopyrimidones, thioamidazolones, and benzothiazines.25,35
(8) Bloom, J. D.; Dushin, R. G.; Curran, K. J.; Donahue, F.; Norton, E.
B.; Terefenko, E.; Jonas, T. R.; Ross, A. A.; Feld, B.; Lang, S. A.; DiGrandi,
M. J. Bioorg. Med. Chem. Lett. 2004, 14, 3401–3406.
(9) Adeoye, O.; Ayandele, A. A.; Odunola, O. A. J. Agric. Biol. Sci. 2007,
2, 4–5.
(10) (a) Walpole, C.; Ko, S. Y.; Brown, M.; Beattie, D.; Campbell, E.;
Dickenson, F.; Ewan, S.; Hughes, G. A.; Lemaire, M.; Lerpiniere, J.; Patel,
S.; Urban, L. J. Med. Chem. 1998, 41, 3159–3173.
(11) Shusheng, Z.; Tianrong, Z.; Kun, C.; Youfeng, X.; Bo, Y. Eur. J.
Med. Chem. 2008, 43, 2778–2783.
(12) (a) Tilley, J. W.; Levitan, P.; Kierstead, R. W.; Cohen, M. J. Med.
Chem. 1980, 23, 1387–1392. (b) Tilley, J. W.; Ramuz, H.; Hefti, F.; Gerold,
M. J. Med. Chem. 1980, 23, 1438–1439.
(20) For thiourea containing RGD peptides, see: (a) Kalinina, S.;
Gliemann, H.; Lopez-Garcia, M.; Petershans, A.; Auernheimer, J.;
Schimmel, T.; Bruns, M.; Schambony, A.; Kessler, H.; Wedlich, D. Bioma-
terials 2008, 29, 3004–3013. For lysine thiourea derivative, see: (b) Leblond,
J.; Mignet, N.; Largeau, C.; Seguin, J.; Scherman, D.; Herscovici, J. Bioconj.
Chem. 2008, 19, 306–314.
(21) Kunze, U.; Burghardt, R. Phosphorus Sulfur Relat. Elem. 1987, 29,
373–376.
(22) Nowick, J. S.; Holmes, D. L.; Noronha, G.; Smith, E. M.; Nguyen,
T. M.; Huang, S. J. Org. Chem. 1996, 61, 3929–3934.
(13) Zhang, Y.; Talalay, P. Cancer Res. 1994, 54, 1976–1981.
(14) (a) Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419–
4476. (b) Suksai, C.; Tuntulani, T. Chem. Soc. Rev. 2003, 32, 192–202.
(c) Beer, P. D.; Gale, P. Angew. Chem., Int. Ed. 2001, 40, 486-516 and
references cited therein.
(15) (a) Rodriguez-Lucena, D.; Benito, J. M.; Ortiz Mellet, C.; Garcia
Fernandez, J. M. Chem. Commun. 2007, 831–833. (b) Sansone, F.; Chierici,
E.; Casnati, A.; Ungaro, R. Org. Biomol. Chem. 2003, 1, 1802–1809.
(c) Benito, J. M.; Gomez-Garcia, M.; Jiminez Blanco, J. L.; Ortiz Mellet,
C.; Garcia Fernandez, J. M. J. Org. Chem. 2001, 66, 1366–1372.
(16) For the first application of chiral thioureas as organic catalysts, see:
Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901–4902.
(17) For the use of thiourea derived from Pro as a catalyst which was
prepared by coupling Boc-β-proline amine with 3,5-bis(trifluoromethyl)
phenyl isothiocyanate, see: Cao, C. L.; Ye, M. C.; Sun, X. L.; Tang, Y.
Org. Lett. 2006, 8, 2901–2904.
(18) For recent reviews on thioureas as organocatalysts, see: (a) Doyle,
A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713–5743. (b) Tsogoeva, S. B.
Eur. J. Org. Chem. 2007, 1701–1716. (c) Connon, S. J. Chem.;Eur. J. 2006,
12, 5418–5427. (d) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299–4306.
(19) For selected examples, see: (a) Peschiulli, A.; Gun’ko, Y.; Connon,
S. J. J. Org. Chem. 2008, 73, 2454–2457. (b) Ema, T.; Tanida, D.; Matsukawa,
T.; Sakai, T. Chem. Commun. 2008, 957–959. (c) Wang, C.-J.; Zhang, Z.-H.;
Dong, X.-Q.; Wu, X.-J. Chem. Commun. 2008, 1431–1433. (d) Zuend, S. J.;
Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 15872–15883. (e) Chen, W.; Du,
W.; Duan, Y.-Z.; Wu, Y.; Yang, S.-Y.; Chen, Y.-C. Angew. Chem., Int. Ed.
2007, 46, 7667–7670. (f) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen,
E. J. Am. Chem. Soc. 2007, 129, 13404–13405.
(23) (a) Hodgkins, J. E.; Ettlinger, M. G. J. Org. Chem. 1956, 21, 404–
405. (b) Hodgkins, J. E.; Reeves, W. P. J. Org. Chem. 1964, 29, 3098–3099.
(24) (a) Dyson, G. M.; George, H. J. J. Chem. Soc. 1924, 125, 1702–1708.
(b) Dyer, E.; Johnson, T. B. J. Am. Chem. Soc. 1932, 54, 777–787.
(25) For a review on organic isothiocyanates and their utility in the
synthesis of heterocycles, see : Mukerjee, A. K.; Ashare, R. Chem. Rev. 1991,
91, 1-24 and references cited therein.
(26) (a) Tamura, Y.; Adachi, M.; Kawasaki, T.; Kita, Y. Tetrahedron
Lett. 1978, 19, 1753–1754. (b) Tamura, Y.; Kawasaki, T.; Adachi, M.; Kita,
Y. Chem. Pharm. Bull. 1979, 27, 1636–1640.
(27) Dogadkin, B. A.; Pavlov, N. N. Dokl. Akad Nauk. SSSR 1961, 138,
1111. Chem. Abstr. 1961, 55, 24613a.
(28) Mohanta, P. K.; Dhar, S.; Samal, S. K.; Ila, H.; Junjappa, H.
Tetrahedron 2000, 56, 629–637.
(29) (a) Staab, H. A. Angew. Chem., Int. Ed. Engl. 1962, 1, 351–367. (b)
Staab, H. A.; Walther, G. Leibigs Ann. Chem. 1962, 657, 98–103.
(30) Kim, S.; Yi, K. Y. Tetrahedron Lett. 1985, 26, 1661–1664.
(31) Larsen, C.; Steliou, K.; Harpp, D. N. J. Org. Chem. 1978, 43, 337-
339 and references cited therein.
(32) Ramadas, K.; Srinivasan, N.; Janarthanan, N. Tetrahedron Lett.
1993, 34, 6447–6450.
(33) Maddani, M.; Prabhu, K. R. Tetrahedron Lett. 2007, 48, 7151–7154.
(34) For coupling of amines with isothiocyanates, see: (a) Neville, R. G.;
Mcgee, J. J. Can. J. Chem. 1963, 41, 2123–2129. (b) Hodgkins, J. E.; Reeves,
ꢀ
W. P. J. Org. Chem. 1964, 29, 3098–3099. (c) L’abbe, G.; Leurs, S. Tetra-
hedron 1992, 48, 7505–7518.
(35) (a) Stephensen, H.; Zaragosa, F. J. Org. Chem. 1997, 62, 6096–6097.
(b) Wu, Y.-J.; Zhang, Y. Tetrahedron Lett. 2008, 49, 2869–2871.
J. Org. Chem. Vol. 74, No. 15, 2009 5261