pubs.acs.org/joc
(via [2 þ 2 þ 1], [4 þ 2], [5 þ 2], [6 þ 2], and [4 þ 4] cyclo-
Ruthenium-Catalyzed [2 þ 2] Cycloadditions of
additions) that have been studied extensively,3-7 there are
relatively few studies on metal-catalyzed [2 þ 2] cycloaddi-
tions for the formation of 4-membered rings. Recently,
various aspects of transition-metal-catalyzed [2 þ 2] cyclo-
additions of an alkene and an alkyne for the synthesis of
cyclobutenes have been studied by us and others, including
development of novel catalysts, study of the intramolecular
variant of the reaction, investigation of the chemo- and
regioselectivity of unsymmetrical substrates, and asym-
metric induction studies with chiral auxiliaries on the alkyne
component.8-13
Bicyclic Alkenes with Alkynyl Phosphonates
Neil Cockburn, Elham Karimi, and William Tam*
Guelph-Waterloo Centre for Graduate Work in Chemistry and
Biochemistry, Department of Chemistry, University of
Guelph, Guelph, Ontario, Canada N1G 2W1
Received May 15, 2009
We have previously investigated the Ru-catalyzed [2þ2]
cycloaddition of bicyclic alkenes with various heteroatom
functionalities (ynamide 2,8h,8n halide 3,8g,8r sulfide 4,8k
sulfone 58k) in the acetylenic position (Scheme 1). Alkynyl
halides 3 (X=Cl, Br, I) were found to be the most reactive,
proceeding at room temperature. Ynamides 2 (X = N-
(CO2Me)R0), alkynyl sulfides 4 (X = SAr, SR0), and sulfones
5 (X = SO2Ar, SO2R0) were less reactive than alkynyl halides
and required longer reaction time and higher temperature.
To the best of our knowledge, no examples of Ru-cata-
lyzed [2þ2] cycloaddition of alkynyl phosphonates are repor-
ted in the literature. The electron-deficient phosphonate
Ruthenium-catalyzed [2 þ 2] cycloadditions of bicyclic
alkenes with alkynyl phosphonates were investigated.
The phosphonate moieties were found to be compatible
with the Ru-catalyzed cycloadditions giving the corres-
ponding cyclobutene cycloadducts in low to excellent
yield (up to 96%). Alkynyl phosphonates showed lower
reactivity than other heteroatom-substituted alkynes
such as alkynyl halides, ynamides, alkynyl sulfides, and
alkynyl sulfones and required a higher reaction tempera-
ture and much longer reaction time.
(4) (a) Wender, P. A.; Jenkins, T. E. J. Am. Chem. Soc. 1989, 111, 6432.
(b) Jolly, R. S.; Luedtke, G.; Sheehan, D.; Livinghouse, T. J. Am. Chem. Soc.
1990, 112, 4965. (c) Wender, P. A.; Jenkins, T. E.; Suzuki, S. J. Am. Chem.
Soc. 1995, 117, 1843. (d) Murakami, M.; Ubukata, M.; Itami, K.; Ito, Y.
Angew. Chem., Int. Ed. 1998, 37, 2248. (e) Paik, S.-J.; Son, S. U.; Chung, Y.
K. Org. Lett. 1999, 1, 2045. (f) Hilt, G.; Smolko, K. I. Angew. Chem., Int. Ed.
€
2003, 42, 2795. (g) Hilt, G.; Luers, S.; Harms, K. J. Org. Chem. 2004, 69, 624.
(5) (a) Wender, P. A.; Takahashi, H.; Witulski, B. J. Am. Chem. Soc.
1995, 117, 4720. (b) Wender, P. A.; Rieck, H.; Fuji, M. J. Am. Chem. Soc.
1998, 120, 10976. (c) Trost, B. M.; Shen, H. Angew. Chem., Int. Ed. 2001, 40,
2313. (d) Wender, P. A.; Williams, T. J. Angew. Chem., Int. Ed. 2002, 41,
4550.
(6) Wender, P. A.; Correa, A. G.; Sato, Y.; Sun, R. J. Am. Chem. Soc.
2000, 122, 7815.
(7) (a) Wender, P. A.; Ihle, N. C. J. Am. Chem. Soc. 1986, 108, 4678. (b)
Wender, P. A.; Nuss, J. M.; Smith, D. B.; Suarez-Sobrino, A.; Vagberg, J.;
Decosta, D.; Bordner, J. J. Org. Chem. 1997, 62, 4908.
While cycloaddition reactions can be carried out by using
heat, light, or Lewis acids,1 these promoters usually require
the presence of polar functional groups in the substrates.
Unactivated substrates require extreme conditions (high
temperature and high pressure) to promote reaction. Transi-
tion-metal catalysts provide a new opportunity to promote
cycloadditions of unactivated substrates and cycloadditions
that are theoretically forbidden or difficult to achieve. In this
way, transition-metal catalysts have shown themselves to be
a powerful method for the synthesis of rings and complex
molecular stuctures.2 Unlike many other metal-catalyzed
cycloadditions for the formation of 5- to 8-membered rings
(8) For our recent contibutions on metal-catalyzed cycloaddition reac-
tions of bicyclic alkenes, see: (a) Jordan, R. W.; Tam, W. Org. Lett. 2000, 2,
3031. (b) Jordan, R. W.; Tam, W. Org. Lett. 2001, 3, 2367. (c) Jordan, R. W.;
Tam, W. Tetrahedron Lett. 2002, 43, 6051. (d) Villeneuve, K.; Jordan, R. W.;
Tam, W. Synlett 2003, 2123. (e) Villeneuve, K.; Tam, W. Angew. Chem., Int.
Ed. 2004, 43, 610. (f) Jordan, R. W.; Khoury, P. K.; Goddard, J. D.; Tam, W.
J. Org. Chem. 2004, 69, 8467. (g) Villeneuve, K.; Riddell, N.; Jordan, R. W.;
Tsui, G. C.; Tam, W. Org. Lett. 2004, 6, 4543. (h) Riddell, N.; Villeneuve, K.;
Tam, W. Org. Lett. 2005, 7, 3681. (i) Burton, R. R.; Tam, W. Tetrahedron
Lett. 2006, 47, 7185. (j) Villeneuve, K.; Tam, W. Organometallics 2006, 25,
843. (k) Riddell, N.; Tam, W. J. Org. Chem. 2006, 71, 1934. (l) Liu, P.;
Jordan, R. W.; Goddard, J. D.; Tam, W. J. Org. Chem. 2006, 71, 3793. (m)
Jordan, R. W.; Villeneuve, K.; Tam, W. J. Org. Chem. 2006, 71, 5830. (n)
Villeneuve, K.; Riddell, N.; Tam, W. Tetrahedron 2006, 62, 3823. (o) Liu, P.;
Tam, W.; Goddard, J. D. Tetrahedron 2007, 63, 7659. (p) Burton, R. R.; Tam,
W. J. Org. Chem. 2007, 72, 7333. (q) Jordan, R. W.; Le Marquand, P.; Tam,
W. Eur. J. Org. Chem. 2008, 1, 80. (r) Allen, A.; Villeneuve, K.; Cockburn,
N.; Fatila, E.; Riddell, N.; Tam, W. Eur. J. Org. Chem. 2008, 24, 4178.
(9) Trost, B. M.; Yanai, M.; Hoogsteen, K. J. Am. Chem. Soc. 1993, 115,
5294.
(1) (a)
Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.,
Paquette, L. A., Eds.; Pergamon: Oxford, UK, 1991; Vol. 5, Chapters 1-9. (b)
Advances in Cycloaddition; JAI Press: Greenwich, CT, 1988-1999; Vols. 1-6.
(2) (a) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (b)
Wender, P. A.; Love, J. A. Advances in Cycloaddition; JAI: Greenwich, 1999;
Vol. 5. (c) Hegedus, L. S. Coord. Chem. Rev. 1997, 161, 129.
(3) For recent reviews on transition metal-catalyzed [2 þ 2 þ 1] cycload-
ditions, see: (a) Pericas, M. A.; Balsells, J.; Castro, J.; Marchueta, I.;
Moyano, A.; Riera, A.; Vazquez, J.; Verdaguer, X. Pure Appl. Chem. 2002,
74, 167. (b) Sugihara, T.; Yamaguchi, M.; Nishizawa, M. Chem.;Eur. J.
2001, 7, 1589.
(10) Mitsudo, T.; Naruse, H.; Kondo, T.; Ozaki, Y.; Watanabe, Y.
Angew. Chem., Int. Ed. Engl. 1994, 33, 580.
(11) (a) Huang, D. -J.; Rayabarapu, D. K.; Li, L. -P.; Sambaiah, T.;
Cheng, C.-H. Chem.;Eur. J. 2000, 6, 3706. (b) Chao, K. C.; Rayabarapu, D.
K.; Wang, C.-C.; Cheng, C.-H. J. Org. Chem. 2001, 66, 8804.
(12) Treutwein, J.; Hilt, G. Angew. Chem., Int. Ed. 2008, 47, 6811.
(13) For recent review of [2 þ 2] cycloadditions, see: Cockburn, N.;
Goodreid, J.; Tam, W. Curr. Org. Chem. 2009, 6, 219.
5762 J. Org. Chem. 2009, 74, 5762–5765
Published on Web 07/02/2009
DOI: 10.1021/jo9010206
r
2009 American Chemical Society