C O M M U N I C A T I O N S
Table 2. Scope of the Catalytic Reactiona
theoretical calculations of the ECD spectra and [R]D values using time-
dependent density functional theory performed on the tosyl derivative
8.17 X-ray analysis of the ferrocenoyl derivative 9 confirmed the
correctness of this assignment (see the Supporting Information).
In summary, we have developed a novel organocatalytic process
that uses simple reaction conditions and an inexpensive, readily
available catalyst and gives access to N-Boc- and N-Cbz-protected
isoxazolidines in generally good yields and enatioselectivities.
entry
1/2
R
3
4/5
yield (%)b
ee (%)c
1d
2f
3
4
5
6
7
8
1a
1b
1c
1d
1e
1f
1g
1h
1i
PhCH2CH2
CH3
CH3CH2
CH3(CH2)3
CH3(CH2)5
(CH3)2CH
(CH3)2CHCH2
c-C5H9
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3a
3b
3c
3d
3e
3f
4a
4b
4c
4d
4e
4f
4g
4h
4i
86 (86)
53
80
70
72
93 (87)
97 (83)
97
>99 (98)
81
>99
63
60
76
73
91 (60)e
60e
88e
Acknowledgment. We acknowledge financial support from
“Stereoselezione in Sintesi Organica Metodologie e Applicazioni”
2007. Financial support by the Merck-ADP Grant 2007 is also
recognized. We thank M. Mancinelli for recording the ECD spectra.
92e
94e
99 (80)e
98 (57)e
99e
Supporting Information Available: Assignment of the relative and
absolute configurations of 4, X-ray data for 9, optimization results,
experimental procedures, spectral data, and copies of 1H and 13C NMR
spectra for compounds 4, 5, 6c, QD-6c, and 7-11. This material is
9g
10
11h
12
13i
14i
15i
16i,j
17i,j
18
19
20
21
c-C6H11
PhCH2
Ph
>99 (83)e
1j
1k
1l
4j
4k
4l
95e
67
60
91
94
4-BrC6H4
PhCH2CH2
PhCH2CH2
PhCH2CH2
PhCH2CH2
PhCH2CH2
(CH3)2CHCH2
(CH3)2CH
c-C6H11
1a
1a
1a
1a
1a
2a
2b
2c
2d
4m
4n
4o
4p
4q
5a
5b
5c
5d
95
References
<10
-
25k
73l
(1) For a recent review, see: Merino, P. In Science of Synthesis, Vol. 27; Padwa,
A., Ed.; Thieme: Stuttgart, Germany, 2004; p 511.
(2) Fredrickson, M. Tetrahedron 1997, 53, 403.
3a
3a
3a
3a
60
72
>99
68
75
80
94
85
(3) For a review, see: (a) Gothelf, K. V.; Jørgensen, K. A. Chem. Commun.
2000, 1449. For recent examples, see: (b) Palomo, C.; Oiarbide, M.; Arceo,
E.; Garc´ıa, J. M.; Lo´pez, R.; Gonza´lez, A.; Linden, A. Angew. Chem., Int.
Ed. 2005, 44, 6187. (c) Evans, D. A.; Song, H.-J.; Fandrick, K. R. Org.
Lett. 2006, 8, 3351. (d) Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am. Chem.
Soc. 2004, 126, 718. (e) Kano, T.; Hashimoto, T.; Maruoka, K. J. Am.
Chem. Soc. 2005, 127, 11926. (f) Jiao, P.; Nakashima, D.; Yamamoto, H.
Angew. Chem., Int. Ed. 2008, 47, 2411.
(4) For an oxidatively removable N-diphenylmethyl group, see: (a) Hashimoto,
T.; Omote, M.; Kano, T.; Maruoka, K. Org. Lett. 2007, 9, 4805. For
carbohydrate derivatives as hydrolytically removable chiral auxiliaries, see:
(b) Vasella, A. HelV. Chim. Acta 1977, 60, 1273.
c-C5H9
a Reactions were performed with 0.10 mmol of 1a-l or 2a-d, 0.20
mmol of 3a-f, 0.01 mmol of 6c, and 0.50 mmol of 50% (w/w) K2CO3(aq)
in 3.5:3.5:3 Tol/TBME/CH2Cl2 (0.05 M) for 24 h. Results in parentheses
refer to the opposite enantiomer, obtained using QD-6c as the catalyst.
b Isolated yield. c Determined by chiral HPLC analysis. d On a 1.0 mmol
scale. e Determined after Boc deprotection and Cbz derivatization. f Using
4.5:4.5:1 Tol/TBME/CH2Cl2 (0.10 M) for 48 h. g On a 5.0 mmol scale.
h Using 10:1 Tol/CH2Cl2. i For 96 h. j At 0 °C. k Regioisomeric ratio: 60:40
(1H NMR analysis). l For the major regioisomer.
(5) (a) Chiacchio, U.; Balestrieri, E.; Macchi, B.; Iannazzo, D.; Piperno, A.;
Rescifina, A.; Romeo, R.; Saglimbeni, M.; Sciortino, M. T.; Valveri, V.;
Mastino, A.; Romeo, G. J. Med. Chem. 2005, 48, 1389. (b) Rowe, S. P.;
Casey, R. J.; Brennan, B. B.; Buhrlage, S. J.; Mapp, A. K. J. Am. Chem.
Soc. 2007, 129, 10654.
(6) (a) Hussain, S. A.; Sharma, A. H.; Perkins, M. J.; Griller, D. J. Chem.
Soc., Chem. Commun. 1979, 289. (b) Partridge, K. M.; Anzovino, M. E.;
Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 2920. (c) Guinchard, X.; Valle´e,
Y.; Denis, J.-N. Org. Lett. 2005, 7, 5147.
Scheme 2. Elaboration of the Cycloadducts
(7) (a) Fini, F.; Sgarzani, V.; Pettersen, D.; Herrera, R. P.; Bernardi, L.; Ricci,
A. Angew. Chem., Int. Ed. 2005, 44, 7975. (b) Palomo, C.; Oiarbide, M.;
Laso, A.; Lo´pez, R. J. Am. Chem. Soc. 2005, 127, 17622.
(8) For organocatalytic cycloadditions of nitrones, see: (a) [3 + 3]: Phillips,
E. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 2416.
(b) [3 + 2]: Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2000, 122, 9874.
(9) For example, a catalyst related to 6d (Table 1) but bearing the free OH
gave the product with 15% ee (see the Supporting Information).
(10) Yoo, M.-S.; Jeong, B.-S.; Lee, J.-H.; Park, H.-g.; Jew, S.-S. Org. Lett. 2005,
7, 1129.
(11) Poulsen, T. B.; Bernardi, L.; Bell, M.; Jørgensen, K. A. Angew. Chem.,
Int. Ed. 2006, 45, 6551.
(12) In every case, a single diastereoisomer was observed by 1H NMR analysis
of the crude mixture.
(13) 1k and 1l were prepared in low (<20%) yield according to ref 6c. Use of
this method (PhSO2Na, HCOOH, H2O/MeOH or THF) or other procedures
effective for R-amido sulfones (CH2Cl2, PhSO2H; PhSO2Na, HCOOH,
MeOH/H2O, 70 °C), other aromatic aldehydes (2-bromobenzaldehyde,
anisaldehyde), or a tertiary aliphatic aldehyde (pivalaldehyde) failed to give
the expected N-hydroxy-R-amido sulfones.
quasi-enantiomeric quinidine catalyst QD-6c gave access to the
opposite enantiomer of the products, though with lower selectivities
(values in parentheses in entries 1, 6, 7, and 9).15
The synthetic utility of the obtained isoxazolidines was first
demonstrated by chemoselectively performing Boc deprotection and
N-O cleavage. In fact, we were able to isolate the non-N-protected
isoxazolidines 7a, 7f, and 7i in good yields by treatment with
trifluoroacetic acid (TFA) in CH2Cl2 (Scheme 2, top) and the N-Boc-
protected 1,3-aminoalcohol 10 using Mo(CO)6 as the reducing
agent16 (Scheme 2, middle). The highly substituted δ-lactam 11
could instead be obtained by hydrogenolysis of 5c, giving simul-
taneous N-Cbz deprotection and N-O cleavage, followed by a
spontaneous lactamization (Scheme 2, bottom).
(14) This result seems to suggest that the two ester groups are not as independent
as assumed in the simplified two-step pathway depicted in Scheme 1,
although 1H NMR analysis of the crude products 4b-e revealed the
presence of small amounts (<7 mol %) of the linear non-cyclized products
(adduct C in Scheme 1).
(15) Other catalysts related to QD-6c gave similar or worse results (see the
Supporting Information). For a recent example of a PTC reaction where
quasi-enantiomeric Cinchona catalysts display very different behavior, see:
Mizuta, S.; Shibata, N.; Goto, Y.; Furukawa, T.; Nakamura, S.; Toru, T.
J. Am. Chem. Soc. 2007, 129, 6394.
(16) Kudoh, T.; Ishikawa, T.; Shimizu, Y.; Saito, S. Org. Lett. 2003, 5, 3875.
(17) For a review of the use of this method to assign the absolute configurations
of organic molecules, see: Bringmann, G.; Bruhn, T.; Maksimenka, K.;
Hemberger, Y. Eur. J. Org. Chem. 2009, 2717. For leading references, see
the Supporting Information.
The relative and absolute configurations of the cycloadducts were
determined by nuclear Overhauser effect NMR experiments and by
JA902458M
9
J. AM. CHEM. SOC. VOL. 131, NO. 28, 2009 9615