Article
Macromolecules, Vol. 43, No. 5, 2010 2155
[MMA]0 = 10 wt % (i.e., at around the critical overlap concen-
tration c* for linear PMMA chains of DP 50) a relatively high
proportion of branching agent can be tolerated without causing
gelation; up to three DSDMA units per primary chain for the
ATRP formulation and up to five DSDMA units per primary
chain for the RAFT formulation. This strongly suggests that the
majority of the DSDMA actually participates in intramolecular
(17) Durie, S.; Jerabek, K.; Mason, C.; Sherrington, D. C. Macromo-
lecules 2002, 35, 9665–9672.
(18) Chisholm, M.; Hudson, N.; Kirtley, N.; Vilela, F.; Sherrington,
D. C. Macromolecules 2009, 42, 7745–7752.
(19) Weaver, J. V. M.; Williams, R. T.; Royles, B. J. L.; Findlay, P. H.;
Cooper, A. I.; Rannard, S. P. Soft Matter 2008, 4, 985–992.
(20) He, T.; Adams, D. J.; Butler, M. F.; Cooper, A. I.; Rannard, S. P.
J. Am. Chem. Soc. 2009, 131, 1495–1501.
(21) Weaver, J. V. M.; Rannard, S. P.; Cooper, A. I. Angew. Chem.
2009, 48, 2131–2134.
1
cyclizations, rather than forming intermolecular branches. H
NMR studies (data not shown here) confirm the presence of these
“excess” DSDMA units in the branched copolymers. GPC
studies of the disulfide-cleaved copolymers prepared at 10 wt
% indicate slightly highly molecular weights for the thiol-func-
tionalized primary chains, as expected. In summary, we have
demonstrated that the initial monomer concentration is an
important parameter in determining the nature of the products
of the branched copolymerization of MMA and DSDMA under
both RAFT and ATRP conditions. The DSDMA branching
comonomer forms intermolecular branches at both high and low
monomer concentration but reacts preferentially via intramole-
cular cyclization under the latter conditions. Although there are
certainly some subtle differences between RAFT- and ATRP-
synthesized branched copolymers, the initial monomer concen-
tration seems to be much more important than the precise nature
of the polymerization chemistry in determining the microstruc-
ture of the branched copolymer products.
(22) Woodward, R. T.; Slater, R. A.; Higgins, S.; Rannard, S. P.;
Cooper, A. I.; Royles, B. J. L.; Findlay, P. H.; Weaver, J. V. M.
Chem. Commun. 2009, 24, 3554–3556.
(23) Li, Y. T.; Armes, S. P. Macromolecules 2005, 38, 5002–5009.
(24) Camerlynck, S.; Cormack, P. A. G.; Sherrington, D. C. Eur. Polym.
J. 2006, 42, 3286–3293.
€ €
(25) Butun, V.; Bannister, I.; Billingham, N. C.; Sherrington, D. C.;
Armes, S. P. Macromolecules 2005, 38, 4977–4982.
(26) Isaure, F.; Cormack, P. A. G.; Graham, S.; Sherrington, D. C.;
€ €
Armes, S. P.; Butun, V. Chem. Commun. 2004, 9, 1138–1139.
(27) Wang, A. R.; Zhu, S. Macromolecules 2002, 35, 9926–9933.
(28) Li, Y. T.; Armes, S. P. Macromolecules 2005, 38, 8155–8162.
(29) Wang, A. R.; Zhu, S. J. Polym. Sci., Part A: Polym. Chem. 2005, 43,
5710–5714.
(30) Wang, A. R.; Zhu, S. Polym. Eng. Sci. 2005, 45, 720–727.
(31) Bannister, I.; Billingham, N. C.; Armes, S. P.; Rannard, S. P.;
Findlay, P. Macromolecules 2006, 39, 7483–7492.
(32) Bouhier, M.-H.; Cormack, P. A. G.; Graham, S.; Sherrington,
D. C. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 2375–2386.
(33) Yu, Q.; Qin, Z.; Li, J.; Zhu, S. Polym. Eng. Sci. 2008, 48, 1254–
1260.
Acknowledgment. Dr. Peter Wright and Jay Syrett (Warwick
University) are thanked for their advice on the choice of ATRP
initiator and appropriate ATRP homopolymerization condi-
tions. We thank Lubrizol (Hazelwood, UK) for funding a PhD
studentship for JR and for permission to publish this research.
SPA is the recipient of a five-year Royal Society/Wolfson Re-
search Merit Award.
(34) Yang, H.-J.; Jiang, B.-B.; Huang, W.-Y.; Zhang, D.-L.; Kong,
L.-Z.; Chen, J.-H.; Liu, C.-L.; Gong, F.-H.; Yu, Q.; Yang, Y.
Macromolecules 2009, 42, 5976–5982.
(35) Liu, B.; Kazlauciunas, A.; Guthrie, J. T.; Perrier, S. Macromole-
cules 2005, 38, 2131–2136.
(36) Norisuye, T.; Morinaga, T.; Tran-Cong-Miyata, Q.; Goto, A.;
Fukuda, T.; Shibayama, M. Polymer 2005, 46, 1982–1994.
(37) Lin, Y.; Liu, X.; Li, X.; Zhan, J.; Li, Y. J. Polym. Sci., Part A:
Polym. Chem. 2006, 45, 26–40.
Supporting Information Available: Calculation of c* for a
linear PMMA50 homopolymer; 1H NMR spectra for the MP-Br
initiator and DSDMA branching comonomer. This material is
(38) Taton, D.; Baussard, J.-F.; Dupayage, L.; Poly, J.; Gnanou, Y.;
Ponsinet, V.; Destarac, M.; Mignaud, C.; Pitois, C. Chem. Com-
mun. 2006, 18, 1953–1955.
(39) Vo, C.-D.; Rosselgong, J.; Armes, S. P.; Billingham, N. C. Macro-
molecules 2007, 40, 7119–7125.
(40) Poly, J.; Wilson, D. J.; Destarac, M.; Taton, D. Macromol. Rapid
Commun. 2008, 29, 1965–1972.
(41) Tao, L.; Liu, J.; Tan, B. H.; Davis, T. P. Macromolecules 2009, 42,
4960–4962.
(42) Li, Y. T.; Armes, S. P. Macromolecules 2009, 42, 939–945.
(43) Mounteney, P.; Rannard, S.; Findlay, P.; Duncalf, D. J.; Perrier, S.
Polym. Prepr. 2006, 47, 636–637.
References and Notes
(1) Flory, P. J. J. Am. Chem. Soc. 1941, 63, 3083–90.
(2) Stockmayer, W. H. J. Chem. Phys. 1944, 12, 125–31.
(3) Flory, P. J. Principles of Polymer Chemistry; Cornell University
Press: Ithaca, NY, 1953.
(44) Mounteney, P.; Rannard, S.; Findlay, P.; Duncalf, D. J.; Perrier, S.
PMSE Prepr. 2007, 96, 648–649.
(4) O’Brien, N.; McKee, A.; Sherrington, D. C.; Slark, A. T.; Titterton,
A. Polymer 2000, 41, 6027–6031.
(45) Yu, Q.; Gan, Q.; Zhang, H.; Zhu, S. ACS Symp. Ser. 2009, 1024,
181–193.
(46) Rosselgong, J.; Armes, S. P.; Barton, W.; Price, D. Macromolecules
(5) Costello, P. A.; Martin, I. K.; Slark, A. T.; Sherrington, D. C.;
Titterton, A. Polymer 2001, 43, 245–254.
(6) Isaure, F.; Cormack, P. A. G.; Sherrington, D. C. J. Mater. Chem.
2009, 42, 5919–5924.
2003, 13, 2701–2710.
(47) Gao, H.; Min, K.; Matyjaszewski, K. Macromolecules 2007, 40,
7763–7770.
(48) Gao, H.; Li, W.; Matyjaszewski, K. Macromolecules 2008, 41,
2335–2340.
(49) Gao, H.; Miasnikova, A.; Matyjaszewski, K. Macromolecules
2008, 41, 7843–7849.
(50) Gao, H.; Min, K.; Matyjaszewski, K. Macromolecules 2009, 42,
8039–8043.
(7) Slark, A. T.; Sherrington, D. C.; Titterton, A.; Martin, I. K.
J. Mater. Chem. 2003, 13, 2711–2720.
(8) Isaure, F.; Cormack, P. A. G.; Sherrington, D. C. Macromolecules
2004, 37, 2096–2105.
(9) Graham, S.; Cormack, P. A. G.; Sherrington, D. C. Macromole-
cules 2005, 38, 86–90.
(10) Saunders, G.; Cormack, P. A. G.; Graham, S.; Sherrington, D. C.
Macromolecules 2005, 38, 6418–6422.
(51) Li, W.; Gao, H.; Matyjaszewski, K. Macromolecules 2009, 42, 927–
932.
(52) Gao, H.; Li, W.; Min, K.; Matyjaszewski, K. ACS Symp. Ser. 2009,
1023, 203–213.
(11) Baudry, R.; Sherrington, D. C. Macromolecules 2006, 39, 5230–
5237.
(12) Isaure, F.; Cormack, P. A. G.; Sherrington, D. C. React. Funct.
Polym. 2006, 66, 65–79.
(53) Gao, H.; Matyjaszewski, K. Prog. Polym. Sci. 2009, 34, 317–
350.
(13) Graham, S.; Rannard, S. P.; Cormack, P. A. G.; Sherrington, D. C.
J. Mater. Chem. 2007, 17, 545–552.
(54) Li, Y. T.; Ryan, A. J.; Armes, S. P. Macromolecules 2008, 41, 5577–
5581.
(55) Poly, J.; Wilson, D. J.; Destarac, M.; Taton, D. J. Polym. Sci., Part
(14) Camerlynck, S.; Cormack, P.; Sherrington, D.; Saunders, G.
J. Macromol. Sci., Part B: Phys 2005, 44, 881–895.
(15) Besenius, P.; Slavin, S.; Vilela, F.; Sherrington, D. C. React. Funct.
Polym. 2008, 68, 1524–1533.
A: Polym. Chem. 2009, 47, 5313–5327.
(56) Yu, Q.; Xu, S.; Zhang, H.; Ding, Y.; Zhu, S. Polymer 2009, 50,
3488–3494.
(16) Baudry, R.; Sherrington, D. C. Macromolecules 2006, 39, 1455–
1460.