ARTICLE IN PRESS
S.Y. Ahn et al. / Journal of Physics and Chemistry of Solids 69 (2008) 1320–1324
1323
-1
512nm
1.0
0.8
0.6
0.4
0.2
0.0
-1.270
Ir(ppy)2(4-Me-2,3-dpq)
-2
-1.783
Ir(ppy)(4-Me-2,3-dpq)2
-2.50
-3
-4
-4.754
-4.798
-5.11
-5
-6
Ir(ppy)2(acac) Ir(4-Me-2,3-dpq)2(acac)
Ir(pq)2(acac)
Fig. 4. The HOMO and LUMO levels of the related iridium complexes.
300
400
500
600
700
800
wavelength (nm)
4. Conclusion
583nm
1.0
0.8
0.6
0.4
0.2
0.0
The heteroleptic iridium complexes, Ir(ppy)2(4-Me-2,3-
dpq), Ir(ppy)(4-Me-2,3-dpq)2, Ir(pq)2(4-Me-2,3-dpq) and
Ir(pq)(4-Me-2,3-dpq)2, were synthesized and their lumines-
cence properties were investigated. The PL maxima of
Ir(ppy)x(4-Me-2,3-dpq)y and those of Ir(pq)x(4-Me-2,3-
dpq)y were observed at 512 and 583 nm, respectively. Two
different light-emitting mechanisms were suggested for
these emissions.
Ir(pq)2(4-Me-2,3-dpq)
Ir(pq)(4-Me-2,3-dpq)2
Acknowledgement
This work was supported by the Seoul Research and
Business Development Program (10555).
300
400
500
600
700
800
wavelength (nm)
References
Fig. 3. PL spectra of the heteroleptic iridium complexes in a 10ꢀ5 M
CH2Cl2 solution.
[1] M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley,
M.E. Thompson, S.R. Forrest, Nature 395 (1998) 151.
[2] D.F. O’Brien, M.A. Baldo, M.E. Thompson, S.R. Forrest, Appl.
Phys. Lett. 74 (1999) 442.
intra-radiative lifetime of the 4-Me-2,3-dpq ligand-based
state can be longer than that of the ppy ligand-based state
(16 ms). As a result, the green emissions occur mainly from
[3] M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson,
S.R. Forrest, Appl. Phys. Lett. 75 (1999) 4.
[4] S. Lamansky, P. Djurovich, D. Murphy, F. Adbel-Razzaq, H.E. Lee,
C. Adachi, P.E. Burrows, S.R. Forrest, M.E. Thompson, J. Am.
Chem. Soc. 123 (2001) 4304.
3
the MLCT state of ppy in the complexes. On the other
hand, the PL peaks of both Ir(pq)2(4-Me-2,3-dpq) and
Ir(pq)(4-Me-2,3-dpq)2 (583 nm) show the hypsochromic
shift, compared with those of Ir(pq)2(acac) (599 nm) and
Ir(4-Me-2,3dpq)2(acac) (603 nm). A different light-emitting
mechanism can explain these hypsochromic shifts. The
ILET time from the 4-Me-2,3dpq 3MLCT to the pq
3MLCT states and intra-radiative lifetime of the 4-Me-2,3-
[5] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Appl. Phys.
Lett. 79 (2001) 156.
[6] C. Adachi, M.A. Baldo, M.E. Thompson, S.R. Forrest, J. Appl.
Phys. 90 (2001) 5048.
[7] T. Tsuzuki, N. Shirasawa, T. Suzuki, S. Tokito, Adv. Mater. 15
(2003) 1455.
[8] A. Tsuboyama, H. Iwasaki, M. Furugori, T. Mukaide, J. Kamatani,
S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada,
M. Hoshino, K. Ueno, J. Am. Chem. Soc. 125 (2004) 12971.
[9] T. Tsuzuki, S. Tokito, Adv. Mater. 19 (2007) 276.
[10] F.-I. Wu, H.-J. Su, C.-F. Shu, L. Luo, W.-G. Diau, C.-H. Cheng,
J.-P. Duan, G.-H. Lee, J. Mater. Chem. 15 (2005) 1035.
[11] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong,
I. Tsyba, M. Bortz, B. Mui, R. Bau, M.E. Thompson, Inorg. Chem. 40
(2001) 1704.
3
dpq MLCT state of the heteroleptic complexes might be
comparable and the emission from both states can be
combined. Then, the energy gap can become larger due to
combination of the transition from the higher LUMO of
dpq-based energy state and the transition to the lower
HOMO of pq-based energy state. As a result, the energy
gap is extended, leading to a blue shift in the emission
wavelength.
[12] T.D. Anthopoulos, M.J. Frampton, E.B. Namdas, P.L. Burn,
I.D.W. Samuel, Adv. Mater. 16 (2004) 557–560.