In summary, we have demonstrated a newly synthesized
benzene-bridged metallosalphen dimer that can be used to
form high quality sub-millimeter-length tapes with large aspect
ratios by a high throughput solution process. The p–p inter-
actions, together with van der Waals forces, result in a
unidirectional molecular order in the tapes, favoring the
formation of carrier paths with a significant anisotropic
character. The tapes are capable of harvesting visible light
and trigger photocurrent generation with a large on–off ratio.
Moreover, their redox nature enables the formation of either
p- or n-channel semiconductors. These unique functions,
together with their large carrier mobility feature, suggest the
great potential of p-conjugated metallocomplexes in developing
photofunctional materials and molecular optoelectronics.
This research was partially supported by a Grant-in-Aid for
Scientific Research (B) (20350059) from MEXT (Ministry of
Education, Culture, Sports, Science and Technology, Japan).
D. J. thanks the JSPS Asian core program.
Notes and references
1 D. Hertel and H. Bassler, ChemPhysChem, 2008, 9, 666.
2 (a) L. Brunsveld, B. J. B. Folmer, E. W. Meijer and R. P. Sijbesma,
Chem. Rev., 2001, 101, 4071; (b) L. C. Palmer and S. I. Stupp, Acc.
Chem. Res., 2008, 41, 1674; (c) D. T. Bong, T. D. Clark, J. R. Granja
and M. R. Ghadiri, Angew. Chem., Int. Ed., 2001, 40, 988; (d) F. J.
M. Hoeben, P. Jonkheijm, E. W. Meijer and A. P. H. J. Schenning,
Chem. Rev., 2005, 105, 1491; (e) H. A. Klok, K. A. Joliffe,
Fig. 3 (a) The I–V profiles of the tapes between a 10 mm-wide Pt gap
(black curve, without tapes; red curve, with tapes upon visible light
irradiation). (b) The photocurrent when the light is turned on or off at
À2 V (red curve) and 2 V (blue curve) bias voltages. (c) The I–V
profiles of tapes sandwiched between Al/Au electrodes (blue curve,
without light irradiation; red curve, upon visible light irradiation).
(d) The photocurrent when the light is turned on or off at a 2 V bias
voltage. (e) The FP-TRMC profile of tapes in Ar at 25 1C
C. L. Schauer, L. J. Prins, J. P. Spatz, M. Moller, P. Timmerman
¨
and D. N. Reinhoudt, J. Am. Chem. Soc., 1999, 121, 7154.
3 (a) A. V. Santoro and G. Mickevicius, Chem. Phys. Lett., 1975, 36,
658; (b) G. B. M. Vaughan, P. A. Heiney, J. P. McCauley, Jr and
A. B. Smith, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, 46,
2787.
4 (a) K. Ohkubo, R. Iwata, S. Miyazaki, T. Kojima and
S. Fukuzumi, Org. Lett., 2006, 8, 6079; (b) S. Fukuzumi,
T. Okamato and K. Ohkubo, J. Phys. Chem. A, 2003, 107, 5412.
5 (a) B. M. Trost, J. Jaratjaroonphong and V. Reutrakul, J. Am. Chem.
Soc., 2006, 128, 2778; (b) G. A. N. Felton, A. K. Vannucci, J. Chen,
L. T. Lockett, N. Okumura, B. J. Petro, U. I. Zakai, D. H. Evans,
R. S. Glass and D. L. Lichtenberger, J. Am. Chem. Soc., 2007, 129,
upon irradiation with a 355 nm pulse laser at the power of
2.0 Â 1016 photons cmÀ2. (f) The time-of-flight transient conductivity
of tapes at a 2 V bias voltage.
We utilized the laser flash photolysis time-resolved micro-
wave conductivity (FP-TRMC) technique to investigate
the intrinsic carrier mobility of the tapes.11 The transient
conductivity rises rapidly upon laser irradiation at 355 nm,
giving a FSm value of 1.2 Â 10À5 cm2 VÀ1 sÀ1 in Ar gas at the
photon density of 2.0 Â 1016 photons cmÀ2 (Fig. 3(e)). Since
SF6 gas serves as an electron quencher, in this case, only holes
contribute to the conductivity. The tape in SF6 gas under
otherwise identical conditions exhibits a transient conductivity
profile similar to that in Ar, giving a FSm value of 1.16 Â
12521; (c) D. Valigura, J. Moncol, M. Korabik, Z. Pu
J. Mroziski and M. Melnık, Eur. J. Inorg. Chem., 2006, 3813;
(d) B. Nohra, Y. Yao, C. Lescop and R. Reau, Angew. Chem., Int.
´ cekova, T. Lis,
´
´
´
Ed., 2007, 46, 8242; (e) Y.-Q. Lan, X.-L. Wang, S.-L. Li, Z.-M. Su,
K.-Z. Shao and E.-B. Wang, Chem. Commun., 2007, 4863.
6 H. Shimakoshi, S. Hirose, M. Ohba, T. Shiga, H. Okawa and
Y. Hisaeda, Bull. Chem. Soc. Jpn., 2005, 78, 1040.
7 Materials Studio Release Notes, Release 4.4, Accelrys Software,
San Diego, USA, 2009.
8 Selected articles on J-aggregates: (a) M. Shirakawa, S. Kawano,
N. Fujita, K. Sada and S. Shinkai, J. Org. Chem., 2003, 68, 5037;
(b) D. Mobius, Adv. Mater., 1995, 7, 437; (c) S. Yagai, T. Seki,
¨
T. Karatsu, A. Kitamura and F. Wurther, Angew. Chem., Int. Ed.,
¨
10À5 cm2 VÀ1 À1. The negligibly small difference in FSm
s
values between Ar and SF6 gases suggests that holes play a
major role in the conduction of the tape itself in the absence of
any chemical dopants. In order to determine the number of
charge carriers, time-of-flight transient integration was
measured at different bias voltages (Fig. 3(f)). The number
of charge carriers at 2 V was 3.4 Â 1012 and the charge
carrier generation yield (F = number of charge carriers
per photon) was evaluated to be 1.7 Â 10À4. Thus, the
minimum carrier mobility (Sm) was calculated to be
2008, 47, 3367.
9 Y. Che, A. Datar, X. Yang, T. Naddo, J. Zhao and L. Zang, J. Am.
Chem. Soc., 2007, 129, 6354.
10 When the sandwich-type film became thinner, e.g., 1 mm, a much
more abrupt photoresponse and a larger on–off ratio (4.2 Â 105)
were observed (Fig. S7, ESIw).
11 (a) A. Acharya, S. Seki, Y. Koizumi, A. Saeki and S. Tagawa,
J. Phys. Chem. B, 2005, 109, 20174; (b) A. Saeki, S. Seki,
T. Takenobu, Y. Iwasa and S. Tagawa, Adv. Mater., 2008, 20, 920.
12 (a) Y. Yamamoto, T. Fukushima, Y. Suna, N. Ishii, A. Saeki, S. Seki,
S. Tagawa, M. Taniguchi, T. Kawai and T. Aida, Science, 2006, 314,
1761; (b) T. Amaya, S. Seki, T. Moriuchi, K. Nakamoto, T. Nakata,
H. Sakane, A. Saeki, S. Tagawa and T. Hirao, J. Am. Chem. Soc.,
2009, 131, 408; (c) W.-S. Li, Y. Yamamoto, T. Fukushima, A. Saeki,
S. Seki, S. Tagawa, H. Masunaga, S. Sasaki, M. Takata and T. Aida,
J. Am. Chem. Soc., 2008, 130, 8886.
0.068 cm2 VÀ1 À1, which is comparable with or higher than
s
those of large arenes, such as assemblies of hexabenzocoronene12a
and sumanene,12b conjugated polymers,10 and liquid crystalline
systems.12c
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 3119–3121 | 3121