pubs.acs.org/joc
as aldehyde protecting groups.2,4 Other synthetic uses are
Indanones and Indenols from
2-Alkylcinnamaldehydes via the Intramolecular
Friedel-Crafts Reaction of Geminal Diacetates
concerned mainly with substitution reactions of a carbox-
ylate group with carbon nucleophiles.1,5 Acetic acid elimina-
tion from the diacetate acylals of R,β-unsaturated aldehydes
produces 1-acetoxy-1,3-dienes, which have been used in
Diels-Alder reactions.6 Acylals of R,β-unsaturated alde-
hydes also have been employed as substrates in Pd-catalyzed
allylic substitutions.7 In the presence of Lewis acids, the
acylals of acrolein and 2-alkylacroleins will alkylate aro-
matic rings, yielding the enol acetates of 3-arylpropanals, the
Scriabine reaction.8 This reaction, which provides a route to
3-arylpropanals, was described by Igor Scriabine in 1961.
The transformation was effected by treating the unsaturated
acylals with an excess of arene and 1 equiv of TiCl4 in
Gary B. Womack,* John G. Angeles, Vincent E. Fanelli,
Brinda Indradas, Roger L. Snowden, and Philippe Sonnay
Corporate R&D Division, Firmenich, Inc., P.O. Box 5880,
Princeton, New Jersey 08543
Received May 1, 2009
combination with BF3 Et2O. More recent procedures devel-
oped for industrial purposes accomplish the reaction using
substoichiometric levels of Lewis acid.8e,8f
3
Recently, we reported that in situ generated dimethyl
acetals of (E)-2-alkylcinnamaldehydes cyclize in the presence
of catalytic quantities of FeCl3, yielding 1-alkoxy-2-alkyl-
1H-indenes (1).9,10 Typically, indene formation was effected
using 5-10 mol % FeCl3 in refluxing MeOAc. These indenes
were then transformed in two steps (base-catalyzed double-
bond migration to form the enol ether and acid-catalyzed
hydrolysis) into 2-alkylindanones (2). Formally, the trans-
formation corresponds to an intramolecular Friedel-Crafts
acylation achieved with catalytic quantities of Lewis acid.11
Traditional Friedel-Crafts acylations require stoichio-
metric amounts of Lewis acid to proceed to completion
because of coordination of Lewis acid with the resulting aryl
ketones. On the basis of the precedents of our acetal cycliza-
tion and the Scriabine reaction, it seemed plausible that
When treated with Ac2O at rt in the presence of 4-6 mol %
FeCl3, 2-alkylcinnamaldehydes are converted to 2-alkyl-
1H-inden-1-yl acetates through the intermediacy of gem-
diacetates. Methanolysis of the indenyl acetates yields the
corresponding indenols. Saponification yields 2-alkylinda-
nones, providing, in effect, an intramolecular acylation
employing catalytic levels of acid.
Geminal dicarboxylates, or acylals, are prepared by the
acid-catalyzed reaction between aldehydes and noncyclic
anhydrides of carboxylic acids. The reaction is easily accom-
plished under mild conditions using a variety of Brønsted or
Lewis acid catalysts.1,2 A convenient, solventless procedure
is to treat aldehydes with excess acetic anhydride and cata-
lytic quantities of FeCl3 at 0 °C.3 Acylals have been proposed
(6) (a) Snider, B. B.; Amin, S. G. Synth. Commun. 1978, 8, 117–125.
(b) Banks, R. E.; Miller, J. A.; Nunn, M. J.; Stanley, P.; Weakley, T. J. R.;
Zakir, U. J. Chem. Soc., Perkin Trans. 1 1981, 1096–1102. (c) Blanc, P.-Y.
Helv. Chim. Acta 1961, 44, 1–12.
(7) (a) Trost, B. M.; Lee, C. B. J. Am. Chem. Soc. 2001, 123, 3671–3686.
(b) Trost, B. M.; Crawley, M. L.; Lee, C. B. Chem.;Eur. J. 2006, 12, 2171–
2187. (c) Trost, B. M.; Lee, C. B.; Weiss, J. M. J. Am. Chem. Soc. 1995, 117,
7247–7248. (d) Trost, B. M.; Vercauteren, J. Tetrahedron Lett. 1985, 26, 131–
134. (e) Nay, B.; Peyrat, J.-F.; Vercauteren, J. Eur. J. Org. Chem. 1999, 2231–
2234. (f) Lu, X.; Huang, Y. J. Organomet. Chem. 1984, 268, 185–190. (g)
Gravel, D.; Benoit, S.; Kumanovic, S.; Sivaramakrishnan, H. Tetrahedron
Lett. 1992, 33, 1403–1406. (h) van Heerden, F. R.; Huyser, J. J.; Williams, D.
B. G.; Holzapfel, C. W. Tetrahedron Lett. 1998, 39, 5281–5384.
(8) (a) Scriabine, I. Bull. Chem. Soc. Fr. 1961, 1194–1198. (b) Hurlbert, B.
S.; Valenti, B. F. J. Med. Chem. 1968, 11, 708–710. (c) Skouroumounis, G.;
Winter, B. Helv. Chim. Acta 1996, 79, 1095–1109. (d) Valentine, R. H.;
Brandman, H. A. Process for the Preparation of Dihydrocinnamaldehyde
Derivatives. U.S. Patent 4,389,527, June 21, 1983. (e) Shirai, M.; Yoshida, Y.
Sadaike, S. Process for Producing 1-Acetoxy-3-(substituted phenyl)propene
Compound. U.S. Patent 7,173,148 B2, Feb 6, 2007. (f) Snowden, R. L.; Birkbeck,
A.; Womack, G. B. Catalytic Scriabine Reaction. U.S. Patent Appl. 2008/0091042
A1, April 17, 2008.
(1) For a review of the acylal preparation and chemistry, see: Sydnes, L.
K.; Sandberg, M. PINSA-A: Proc. Indian Natl. Sci. Acad., Part A 2002, 68,
141–174.
(2) For recent examples of acylal preparations, see: (a) Karimi, B.;
Maleki, J. J. Org. Chem. 2003, 68, 4951–4954. (b) Yin, L.; Zhang, Z.-H.;
Wang, Y.-M.; Pang, M.-L. Synlett 2004, 1727–1730. (c) Aggen, D. H.;
Arnold, J. N.; Hayes, P. D.; Smoter, N. J.; Mohan, R. S. Tetrahedron
2004, 60, 3675–3679. (d) Kavala, V.; Patel, B. K. Eur. J. Org. Chem. 2005,
441–451. (e) Wang, J.; Yan, L.; Qian, G.; Yang, K.; Liu, H.; Wang, X.
Tetrahedron Lett. 2006, 47, 8309–8312. (f) Pahman, M. A. F. M.; Jahng, Y.
Eur. J. Org. Chem. 2007, 379–383. (g) Hajipour, A. R.; Zarei, A.; Ruoho, A.
E. Tetrahedron Lett. 2007, 48, 2881–2884. (h) Satam, J. R.; Jayaram, R. V.
Catal. Commun. 2007, 8, 1414–1420. (i) Yadav, J. S.; Reddy, B. V. S.;
Sreedhar, P.; Kondaji, G.; Nagaiah, K. Catal. Commun. 2008, 9, 590–593.
(3) Kochhar, K. S.; Bal, B. S.; Deshpande, R. P.; Rajadhyaksha, S. N.;
Pinnick, H. W. J. Org. Chem. 1983, 48, 1765–1767.
(9) Womack, G. B.; Angeles, J. G.; Fanelli, V. E.; Heyer, C. A. J. Org.
Chem. 2007, 72, 7046–7049.
(10) The formation of 1 has also been reported using a stoichiometric
amount of BF3 Et2O: (a) Jobashi, T.; Kawai, A.; Kawai, S.; Maeyama, K.;
(4) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic
Synthesis, 2nd ed.; Wiley: New York, 1999; pp 184-185.
3
Oike, H.; Yoshida, Y.; Yonezawa, N. Tetrahedron 2006, 62, 5717–5724.
(b) Jobashi, T.; Maeyama, K.; Noguchi, K.; Yoshida, Y.; Yonezawa, N. Bull.
Chem. Soc. Jpn. 2006, 79, 627–633.
(5) (a) Sydnes, L. K.; Sandberg, M. Tetrahedron 1997, 53, 12679–12690.
(b) Sandberg, M.; Sydnes, L. K. Tetrahedron Lett. 1998, 39, 6361–6364.
(c) Sandberg, M.; Sydnes, L. K. Org. Lett. 2000, 2, 687–689. (d) Sydnes, L.
K.; Pedersen, G. S.; Holmelid, B.; Sanberg, M. Synthesis 2007, 3692–3696.
(e) Yadav, J. S.; Reddy, B. V. S.; Reddy, G. S. K. K. Tetrahedron Lett. 2000,
41, 2695–2697. (f) Kryshtal, G. V.; Bogdanov, V. S.; Yanovskaya, L. A.
Tetrahedron Lett. 1982, 23, 3607–3610.
(11) For other examples of intramolecular Friedel-Crafts acylations
employing catalytic levels of the Lewis acid, see: (a) Fillion, E.; Fishlock,
D.; Wilsily, A.; Goll, J. M. J. Org. Chem. 2005, 70, 1316–1327. (b) Fillion, E.;
Fishlock, D. Org. Lett. 2003, 5, 4653–4656. (c) Cui, D.-M.; Zhang, C.;
Kawamura, M.; Shimada, S. Tetrahedron Lett. 2004, 45, 1741–1745.
5738 J. Org. Chem. 2009, 74, 5738–5741
Published on Web 07/02/2009
DOI: 10.1021/jo900910b
r
2009 American Chemical Society