pubs.acs.org/joc
On the other hand, transition-metal-catalyzed organic
Synthesis of Functionalized r-Pyrone and Butenolide
Derivatives by Rhodium-Catalyzed Oxidative
Coupling of Substituted Acrylic Acids with Alkynes
and Alkenes
reactions via C-H bond cleavage have been significantly
developed in recent years4 and, in some cases, successfully
substituted for those of the corresponding organic halides.
As one such example, we recently reported the direct oxida-
tive coupling of benzoic acids with alkynes and alkenes, such
as acrylates, under rhodium catalysis involving the cleavage
of their ortho C-H bond (Scheme 1).5 These reactions
provide straightforward pathways to isocoumarin and
phthalide derivatives from widely available benzoic acids.
Satoshi Mochida, Koji Hirano, Tetsuya Satoh,* and
Masahiro Miura*
Department of Applied Chemistry, Faculty of Engineering,
Osaka University, Suita, Osaka 565-0871, Japan
SCHEME 1. Coupling of Benzoic Acids with Alkynes and
Alkenes
satoh@chem.eng.osaka-u.ac.jp; miura@chem.eng.
osaka-u.ac.jp
Received May 21, 2009
Variously substituted acrylic acids are also readily available.
During our further studies of rhodium-catalyzed oxidative
coupling,6,7 it has been found that our catalyst system is
applicable to functionalization of acrylic acids through vinylic
C-H bond cleavage.8 Thus, the corresponding R-pyrone and
butenolide derivatives can be synthesized efficiently by the
oxidative coupling of such acids with alkynes and alkenes,
respectively. Expectedly, some R-pyrones obtained have been
found to show solid-state fluorescence. The results obtained for
the coupling reactions are described herein.
The straightforward and efficient synthesis of R-pyrone
and butenolide derivatives has been achieved by the
rhodium-catalyzed oxidative coupling reactions of sub-
stituted acrylic acids with alkynes and alkenes, respec-
tively. Some R-pyrones obtained exhibit solid-state
fluorescence.
(4) Selected reviews: (a) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013. (b)
Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013.
(c) Ferreira, E. M.; Zhang, H.; Stoltz, B. M. Tetrahedron 2008, 64, 5987. (d)
Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (e)
Herrerias, C. I.; Yao, X.; Li, Z.; Li, C.-J. Chem. Rev. 2007, 107, 2546. (f)
Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (g)
Godula, K.; Sames, D. Science 2006, 312, 67. (h) Satoh, T.; Miura, M. J.
Synth. Org. Chem. 2006, 64, 1199. (i) Conley, B. L.; Tenn, W. J. III; Young,
K. J. H.; Ganesh, S. K.; Meier, S. K.; Ziatdinov, V. R.; Mironov, O.;
Oxgaard, J; Gonzales, J.; Goddard, W. A., III; Periana, R. A. J. Mol. Catal.
A 2006, 251, 8. (j) Miura, M.; Satoh, T. Top. Organomet. Chem. 2005, 14, 55.
(k) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077. (l) Ritleng,
V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731. (m) Miura, M.;
Nomura, M. Top. Curr. Chem. 2002, 219, 211. (n) Kakiuchi, F.; Murai, S.
Acc. Chem. Res. 2002, 35, 826. (o) Dyker, G. Angew. Chem., Int. Ed. 1999, 38,
1698. (p) Kakiuchi, F.; Murai, S. Top. Organomet. Chem. 1999, 3, 47. (q)
Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97, 2879.
R-Pyrone and butenolide structures are found in various
natural products that exhibit a broad range of interesting
biological properties.1 They are also of interest for their
fluorescence properties.2 One of the useful procedures for
their construction is the palladium-catalyzed annulation by
the coupling of (Z)-β-iodopropenoates with internal alkynes.3
The iodides are, however, prepared in more than four steps.
(5) (a) Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009,
74, 3478. (b) Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 5362.
(c) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9, 1407.
(1) For recent examples, see: (a) Inack-Ngi, S; Rahmani, R.; Commeiras,
^
L.; Chouraqui, G.; Thibonnet, J.; Duchene, A.; Abarbri, M. Adv. Synth.
Catal. 2009, 351, 779. (b) Hagimori, M.; Mizuyama, N.; Shigemitsu, Y.;
Wang, B.-C.; Tominaga, Y. Heterocycles 2009, 78, 555. (c) Pozgan, F.;
Kocevar, M. Heterocycles 2009, 77, 657. (d) Kunibobu, Y.; Kawata, A.;
Nishi, M.; Takata, H.; Takai, K. Chem. Commun. 2008, 6360. (e) Virolleaud,
M.-A.; Piva, O. Synlett 2004, 2087. (f) Yao, T.; Larock, R. C. J. Org. Chem.
2003, 68, 5936. (g) Rousset, S.; Abarbri, M.; Thibonnet, J.; Parrain, J.-L.;
(6) (a) Umeda, N.; Tsurugi, H.; Satoh, T.; Miura, M. Angew. Chem., Int.
Ed. 2008, 47, 4019. (b) Shimizu, M.; Tsurugi, H.; Satoh, T.; Miura, M. Chem.
Asian J. 2008, 3, 881. (c) Uto, T.; Shimizu, M.; Ueura, K.; Tsurugi, H.; Satoh,
T.; Miura, M. J. Org. Chem. 2008, 73, 298. (d) Miyamura, S.; Tsurugi, H.;
Satoh, T.; Miura, M. J. Organomet. Chem. 2008, 693, 2438.
(7) More recently, related Rh systems were employed for oxidative
coupling of 2-phenylpyridines and acetanilides: (a) Li, L.; Brennessel, W.
W.; Jones, W. D. J. Am. Chem. Soc. 2008, 130, 12414. (b) Stuart, D. R.;
Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc.
2008, 130, 16474.
^
Duchene, A. Tetrahedron Lett. 2003, 44, 7633. (h) Shen, Y.-C.; Prakash, C.
V. S.; Kuo, Y.-H. J. Nat. Prod. 2001, 64, 324. (i) Gawronski, J. K.; van
Oeveren, A.; van der Deen, H.; Leung, C. W; Feringa, B. L. J. Org. Chem.
1996, 61, 1513.
(2) (a) Hirano, K.; Minakata, S.; Komatsu, M. Bull. Chem. Soc. Jpn.
2001, 74, 1567. (b) Hirano, K.; Minakata, S.; Komatsu, M.; Mizuguchi, J. J.
Phys. Chem. A 2002, 106, 4868.
(3) (a) Larock, R. C.; Doty, M. J.; Han, X. J. Org. Chem. 1999, 64, 8770.
(b) Larock, R. C.; Han, X.; Doty, M. J. Tetrahedron Lett. 1998, 39, 5713.
(8) For recent examples, see: (a) Shibata, Y.; Otake, Y.; Hirano, M.;
Tanaka, K. Org. Lett. 2009, 11, 689. (b) Giri, R.; Yu, J.-Q. J. Am. Chem. Soc.
2008, 130, 14082. (c) Colby, D. A.; Bergman, R. G.; Ellman, J. A. J. Am.
Chem. Soc. 2008, 130, 3645. (d) Oi, S.; Sakai, K.; Inoue, Y. Org. Lett. 2005, 7,
4009.
DOI: 10.1021/jo901077r
r
Published on Web 07/02/2009
J. Org. Chem. 2009, 74, 6295–6298 6295
2009 American Chemical Society