C O M M U N I C A T I O N S
Scheme 2. Reactants and Productsa
Figure 1
Acknowledgment. We thank Reji Nair for early experiments,
Dr. LeRoy Lafferty for his assistance with NMR experiments, and
the NSF (CHE 0719575) for supporting this and related work.
Supporting Information Available: Details of reaction conditions
and results. This material is available free of charge via the Internet at
a Reactions carried out in acetone-d6 with enough deuterium oxide so
as to provide 20 D per exchangeable H present. The number in brackets
indicates the percentage of the theoretical amount (95%) of deuterium. b RT
with 2% catalyst. c 70 °C with 5% catalyst. d RT with 5% catalyst.
References
(1) Thomas, A. F. Deuterium Labeling in Organic Chemistry; Appleton-Century-
Crofts: New York, NY, 1971.
exchange mainly at the exocyclic isopropenyl group. Deuterium
incorporation is observed at the endocyclic double bond but is
far from complete, which can be attributed to steric hindrance
to 1 forming an η3-allyl complex at this position. Deuteration
of (+)-valencene was even more selective. Exocyclic isopropenyl
groups are found in many terpenoid natural products; hence facile
pentadeuteration at such sites is of particular interest.
Biphasic reactions were performed on liquid substrate 4-al-
lylanisole by stirring it with only catalyst and D2O, avoiding
the use of organic solvents. Higher deuterium content was
reached in shorter time compared to homogeneous reactions.6a
Moreover, using less D2O, phase separation after equilibration
to ∼80% deuteration (70 °C, 24 h)6c allowed removal of the
aqueous phase and recharging the reaction system with fresh
D2O for further exchange.
In summary, unlike previous catalysts, bifunctional catalyst
1 performs H/D exchange at allylic positions with excellent
control of isomerization when it occurs. Inexpensive and safe-
to-handle D2O is the source of label.
The high steric selectivity of 1 for (E)-alkenes gives the
catalyst a unique reactivity and selectivity profile, which is
expected to be especially useful in labeling complex substrates
either at a late stage of a synthesis or using material directly
from natural sources.
(2) Junk, T.; Catallo, W. J. Chem. Soc. ReV. 1997, 26, 401–406.
(3) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. Angew. Chem., Int. Ed.
2007, 46, 7744–7765.
(4) (a) Klei, S. R.; Golden, J. T.; Tilley, T. D.; Bergman, R. G. J. Am. Chem.
Soc. 2002, 124, 2092–2093. (b) Klei, S. R.; Tilley, T. D.; Bergman, R. G.
Organometallics 2002, 21, 4905–4911. (c) Golden, J. T.; Andersen, R. A.;
Bergman, R. G. J. Am. Chem. Soc. 2001, 123, 5837–5838. (d) Hanson, S. K.;
Heinekey, D. M.; Goldberg, K. I. Organometallics 2008, 27, 1454–1463.
(e) Corbera´n, R.; Sanau´, M.; Peris, E. J. Am. Chem. Soc. 2006, 128, 3974–
3979. (f) Corbera´n, R.; Sanau´, M.; Peris, E. Organometallics 2006, 25, 4002–
4008. (g) Prechtl, M. H. G.; Ho¨lscher, M.; Ben-David, Y.; Theyssen, N.;
Loschen, R.; Milstein, D.; Leitner, W. Angew. Chem., Int. Ed. 2007, 46,
2269. (h) Faller, J. W.; Felkin, H. Organometallics 1985, 4, 1488–1490. (i)
Faller, J. W.; Smart, C. J. Organometallics 1989, 8, 602–609. (j) Rybtchinski,
B.; Cohen, R.; Ben-David, Y.; Martin, J. M. L.; Milstein, D. J. Am. Chem.
Soc. 2003, 125, 11041–11050. (k) Yung, C. M.; Skaddan, M. B.; Bergman,
R. G. J. Am. Chem. Soc. 2004, 126, 13033–13043. (l) Kohl, G.; Rudolph,
R.; Pritzkow, H.; Enders, M. Organometallics 2005, 24, 4774–4781. (m)
Zhou, J. R.; Hartwig, J. F. Angew. Chem., Int. Ed. 2008, 47, 5783–5787.
(5) Grotjahn, D. B.; Larsen, C. R.; Gustafson, J. L.; Nair, R.; Sharma, A. J. Am.
Chem. Soc. 2007, 129, 9592–9593.
(6) See Supporting Information. (a) Determined by integration of 1H-NMR. (b)
Determined by 1H and 2D NMR. (c) Table S5.
(7) Although the integration of the C2 proton signal decreases slowly over time,
control experiments with H2O rather than D2O showed that this is due to
enol ether hydration to aldehyde rather than H/D exchange.
(8) Examples: (a) Courchay, F. C.; Sworen, J. C.; Ghiviriga, I.; Khalil, A. A.;
Wagener, K. B. Organometallics 2006, 25, 6074–6086. (b) McGrath, D. V.;
Grubbs, R. H. Organometallics 1994, 13, 224–235. (c) Bergens, S. H.;
Bosnich, B. J. Am. Chem. Soc. 1991, 113, 958–967. (d) Hendrix, W. T.;
Von Rosenberg, J. L. J. Am. Chem. Soc. 1976, 98, 4850–4852.
(9) Determined by 1H and 2D NMR; see Supporting Information.
JA903519A
9
J. AM. CHEM. SOC. VOL. 131, NO. 30, 2009 10355