G. Iskander et al. / Tetrahedron Letters 50 (2009) 4613–4615
4615
8. Goh, W. K.; Iskander, G.; Black, D. StC.; Kumar, N. Tetrahedron Lett. 2007, 48,
2287–2290.
9. Manny, A. J.; Kjelleberg, S.; Kumar, N.; de Nys, R.; Read, R. W.; Steinberg, P.
Tetrahedron 1997, 53, 15813–15826.
10. Caine, D.; Ukachukwu, V. C. J. Org. Chem. 1985, 50, 2195–2198.
11. Grossmann, G.; Poncioni, M.; Bornand, M.; Jolivet, B.; Neuburger, M.; Séquin, U.
Tetrahedron 2003, 59, 3237–3251.
12. Bellina, F.; Anselmi, C.; Rossi, R. Tetrahedron Lett. 2001, 42, 3851–3854.
13. Scheffold, R.; Dubs, P. Helv. Chim. Acta 1967, 50, 798–808.
14. Zhang, R.; Chan, D.; Jessica, S.; Iskander, G.; Black, D. StC.; Kumar, N. ARKIVOC
2009, 5, 102–115.
ing to the (E)-isomer, due to steric clashes with the exocyclic bro-
mine atom.
The levulinic acids and the 4-alkyl-2(5H)-furanones were
mostly obtained as colourless, pale yellow or pale brown oils. An
aqueous work-up or filtration was sufficient for all intermediate
reactions and column chromatography was only used after the
final step to isolate furanone products 4a–h. The final products
have a tendency to polymerise while standing, even in cold stor-
age, however they were stable enough to be purified and fully
characterised. All products gave satisfactory 1H and 13C NMR spec-
tra and HRMS values.
15. Representative procedure for compound 11d: To a solution of acid 9d (0.052 mol)
in dry dichloromethane (25 mL) were added phosphorus pentoxide
(0.156 mol) and
a few crystals of hydroquinone, and the mixture was
refluxed for 2 h. The solution was cooled, filtered through a bed of Celite–
In summary, we have described a versatile and efficient method
for the synthesis of novel brominated 4-alkyl-2(5H)-furanones.
This methodology utilises simple starting materials and reagents,
mild reaction conditions and requires only one chromatographic
purification over six steps. Further studies on the chemistry and
biological activity of these fimbrolide derivatives are being con-
ducted in our laboratory.
silica and evaporated under reduced pressure to afford
a mixture of
diastereomers of furanone 11d as a pale yellow oil (89%). 1H NMR (CDCl3): d
0.92 (3H, t, J = 7.1 Hz, CH3), 1.33–1.35 (6H, m, CH2), 1.76 (2H, m, CH2), 2.23–
2.25 (2H, m, CH2), 4.62 and 4.66 (1H, each s, H3), 4.87 and 5.03 (1H, each d,
J = 3.2 Hz, @CHa), 4.88 and 5.05 (1H, each d, J = 3.2 Hz, @CHb); IR (KBr): mmax
2956, 2930, 2859, 1787, 1767, 1650, 1605, 1460, 1378, 1268, 1239, 1166, 1109,
969, 931, 890 cmÀ1. UV–vis (MeOH): kmax 258 nm ( 14,800 cmÀ1MÀ1).
e
16. Representative procedure for compound 4d: To a stirred solution of furanone 13d
(0.05 mol) in dry dichloromethane (100 mL) at 0 °C was added a solution of
N,N-diisopropylethylamine (0.17 mol) in dry dichloromethane (20 mL). The
mixture was allowed to warm to room temperature and was further stirred for
72 h. The reaction mixture was washed successively with 2 M HCl (30 mL) and
brine (30 mL), and the organic extract was dried over Na2SO4 and evaporated
under reduced pressure. Purification by column chromatography on silica gel
(25% dichloromethane/light petroleum) gave furanone 4d (Rf 0.90) as a pale
yellow oil (55%). 1H NMR (CDCl3): d 0.90 (3H, t, J = 7.2 Hz, CH3), 1.33 (6H, m,
CH2), 1.61 (2H, m, CH2), 2.52 (2H, t, J = 7.9 Hz, CH2), 6.22 (1H, s, CHBr). 13C NMR
(75 MHz, CDCl3): d 13.9 (CH3), 22.3, 26.1, 28.2, 29.0, 31.2 (5CH2), 90.5 (CHBr),
117.7, 151.4, 153.5, 163.5 (C@O). IR (KBr): mmax 3092, 2955, 2928, 2857, 1786,
1679, 1636, 1595, 1465, 1364, 1301, 1219, 1183, 1050, 982, 914, 840, 765,
Acknowledgements
We thank the University of New South Wales and the Australian
Research Council for their financial support.
References and notes
1. Livermore, D. Clin. Infect. Dis. 2003, 36, S11–S23.
2. Alanis, A. Arch. Med. Res. 2005, 36, 697–705.
750 cmÀ1. UV–vis (MeOH) kmax: 290 nm ( 5650 cmÀ1MÀ1). MS (EI): m/z (%)
e
340 (M, 81Br2, 20) 338 (M, 81Br, 79Br, 40), 336 (M, 79Br2, 20), 270 (20), 268 (40),
266 (20), 259 (44), 257 (44), 215 (30), 213 (30), 189 (100), 187 (100), 178 (30),
176 (30), 159 (30), 149 (40), 135 (70), 121 (80). HRMS (+ESI): C11H1579Br2O2
[M+H]+ requires 336.9439, found 336.9414.
3. Ni, N.; Li, M.; Wang, J.; Wang, B. Med. Res. Rev. 2009, 29, 65–124.
4. Miller, M.; Bassler, B. Annu. Rev. Microbiol. 2001, 55, 165–199.
5. Givskov, M.; de Nys, R.; Manefield, M.; Gram, L.; Maximilien, R.; Eberl, L.; Molin,
S.; Steinberg, P. D.; Kjelleberg, S. J. Bacteriol. 1996, 178, 6618–6622.
6. Hentzer, M.; Wu, H.; Anderson, J.; Riedel, K.; Rasmussen, T.; Bagge, N.; Kumar,
N.; Schembri, M.; Song, Z.; Kristoffersen, P.; Manefield, M.; Costerton, J.; Molin,
S.; Eberl, L.; Steinberg, P.; Kjelleberg, S.; Hoiby, N.; Givskov, M. J. EMBO 2003, 22,
3803–3815.
17. Representative data for compound 3a: Pale yellow oil (50%). 1H NMR (CDCl3): d
2.11 (3H, s, CH3), 5.98 (1H, s, H3), 6.02 (1H, s, CHBr). 13C NMR (75 MHz, CDCl3):
d 12.2 (CH3), 89.8 (CHBr), 117.9, 153.6, 154.0, 168.0 (C@O). IR (Nujol): mmax
2950, 2920, 2850, 1765, 1590, 1460, 1380, 1230, 1020, 910, 850, 750,
720 cmÀ1
210.9370.
18. Beechan, C.; Sims, J. Tetrahedron Lett. 1979, 19, 1649–1652.
.
HRMS (+ESI): C6H579BrO2 [M+Na]+ requires 210.9371, found
7. deNys, R.; Givskov, M.; Kumar, N.; Kjelleberg, S.; Steinberg, P.. In Antifouling
Compounds; Fusetani, N., Clare, A., Eds.; Springer: Berlin, Heidelberg, 2006; Vol.
2, pp 55–85.