10
KIRAN ET AL.
[9] K. Kim, J. Cho, S. C. Yoon, J. Chem. Soc. Perkin Trans. 1995,
1, 253.
and amphotericin-B for yeast. This procedure was per-
formed in three replicate plates for each organism.[45,46]
[10] R. C. Larock, Comprehensive Organic Transformations, 2nd
ed., VCH Publishers Inc, New York U S A 1999, p. 717.
[11] N. De Kimpe, R. Verhe, The Chemistry of α-Haloketones;
α-Haloaldehydes and α-Haloimines (Eds: S. Patai, Z. Rapport),
John Wiley and Sons, Chichester, 1988, 1.
[12] M. Boeykens, N. D. Kimpe, Tetrahedron 1994, 50, 12349.
[13] W. L. Evans, B. T. Brooks, J. Am. Chem. Soc. 1908, 30, 406.
[14] V. K. Ahluwalia, K. K. Arora, G. Kaur, B. Mehta, Synth.
Commun. 1987, 17, 333.
[15] A. Kumar, R. Prakash, S. P. Singh, Synth. Commun. 2005,
35, 461.
[16] R. Prakash, A. Kumar, S. P. Singh, Synth. Commun. 2007, 37,
2501.
[17] R. Prakash, A. Kumar, S. P. Singh, R. Aggarwal, O. Prakash,
Indian J. Chem. Sect. A: Inorg. Bio-inorg. Phys. Theor. Anal.
Chem. 2007, 46B, 1713.
[18] R. Pundeer, V. Kiran, Sushma, O. Prakash, S. C. Bhatia, Der
Pharma Chemica 2011, 3, 109.
[19] R. Pundeer, Sushma, C. Sharma, K. R. Aneja, Int. J. Adv. Res.
Pharm. Biol. Sci. 2013, 3, 102.
[20] B. Grybaite, R. Vaickelioniene, M. Stasevych, O. Komarovska-
Porokhnyavets, K. Kantminiene, V. Novikov, V. Mickevicius,
ChemistrySelect 2011, 4, 6965.
7.10 | Determination of minimum
inhibitory concentration of chemical
compounds
Minimum inhibitory concentration (MIC) is the lowest
concentration of an antimicrobial compound that will
inhibit the visible growth of a microorganism after over-
night incubation. MIC of the various compounds against
bacterial and yeast strains was tested through a modified
agar well diffusion method.[47] In this method, a 2-fold
serial dilution of each chemically synthesized compound
was prepared by first reconstituting the compound in
DMSO followed by dilution in sterile distilled water to
achieve a decreasing concentration range of 256 to
0.5 μg/mL. A 100 μL volume of each dilution was intro-
duced into wells (in triplicate) in the agar plates already
seeded with 100 μL of standardized inoculum (106 cfu/
mL) of the test microbial strain. All test plates were incu-
bated aerobically at 37ꢀC for 24 hours and observed for
the inhibition zones. MIC, taken as the lowest concentra-
tion of the chemical compound that completely inhibited
the growth of the microbe, showed by a clear zone of
inhibition, was recorded for each test organism. Cipro-
floxacin and amphotericin B was used as positive control
while DMSO as negative control.
[21] C. Tratrat, M. Haroun, I. Xenikakis, K. Liaras, E. Tsolaki,
P. Eleftheriou, A. Petrou, B. Aldhubiab, M. Attimarad,
K. N. Venugopala, Current Topics in Medicinal Chemistry, Vol.
19, Sharjah United Arab Emirates, 2019, p. 356.
[22] I. Althagafi, N. El-Metwaly, T. A. Farghaly, Molecules 2019, 24,
1741.
[23] J. N. Gohel, K. S. Lunagariya, K. M. Kapadiya, R. C. Khunt,
Chem. Biol. Interface 2019, 9, 32.
[24] P. Rakesh, Shailendra, Curr. Bioact. Compd. 2019, 15, 114.
[25] J. Miryala, M. Morthad, S. Battu, Asian J. Chem. 2019,
31, 297.
[26] M. M. Masood, M. Irfan, S. Alam, P. Hasan, A. Queen,
S. Shahid, M. Zahid, A. Azam, M. Abid, Lett. Drug Des. Discov-
ery 2019, 16, 160.
[27] D. Sharma, S. Kumar, B. Narasimhan, K. Ramasamy,
S. M. Lim, S. A. A. Shah, V. Mani, BMC Chem. 2019, 13, 46.
[28] C. Tratrat, M. Haroun, B. Aldhubiab, M. Attimarad,
K. N. Venugopala, S. Harsha, H. S. Elsewedy, I. Xenikakis,
K. Liaras, E. Tsolaki, Curr. Top. Med. Chem. 2019, 19, 356.
[29] D. Sharma, K. K. Bansal, A. Sharma, M. Pathak, P. C. Sharma,
Curr. Bioact. Compd. 2019, 15, 304.
ACKNOWLEDGMENTS
We are indebted to UGC for providing research fellow-
ship to Ms. Vijay Kiran for carrying out this work.
ORCID
REFERENCES
[1] R. Prakash, N. Sharma, L. Arora, R. Aggarwal, J. K. Kapoor,
R. Pundeer, O. Prakash, Indian J. Heterocycl. Chem. 2019,
29, 99.
[2] L. Arora, R. Prakash, R. Pundeer, Synth. Commun. 2019, 49, 1486.
[3] O. Prakash, N. Sharma, K. Pannu, Synth. Commun. 2007, 37,
1995.
[4] V. K. Ahluwalia, B. Mehta, R. Kumar, Synth. Commun. 1989,
19, 619.
[5] V. K. Ahluwalia, B. Mehta, M. Rawat, Synth. Commun. 1992,
22, 2697.
[6] N. Sharma, R. Prakash, O. Prakash, Indian J. Heterocycl. Chem.
2016, 25, 297.
[7] R. Pundeer, V. Kiran, R. Prakash, Sushma, S. C. Bhatia,
C. Sharma, K. R. Aneja, Med. Chem. Res. 2016, 21, 4043.
[8] D. Hazarika, P. Phukan, Tetrahedron 2017, 73, 1374.
[30] D. Keman, F. Soyer, ACS Omega. 2019, 4, 15393. https://doi.
[31] Duceac, L. Doina, Marcu, Constantin, Ichim, D. Luminita,
Ciomaga, I. Mihaela, Tarca, Elena, Iordache, A. Constantin,
Ciuhodaru, M. Irina, Florescu, Laura, Tutunaru, Dana, Luca,
Alina Costina Revista de Chimie (Bucharest; Romania) 2019,
70, 2622.
[32] D. H. Oh, Y. C. Kim, E. J. Kim, I. Y. Jung, S. J. Jeong, S. Y. Kim,
M. S. Park, A. Kim, J. G. Lee, H. C. Paik, Infect. Dis. 2019, 51, 493.
[33] S. Leone, M. Cascella, I. Pezone, M. Fiore, Curr. Med. Res.
Opin. 2019, 35, 1331.
[34] V. P. Landage, D. R. Thube, B. K. Karale, Orient. J. Chem.
2019, 35, 481.