376 Bull. Chem. Soc. Jpn., 74, No. 2 (2001)
New Catalytic Process Using C−O Bond Cleavage
0.15 mmol), heptafluorobutyrate (295 mg, 1.02 mmol), and 4-
methoxyphenylboronic acid (181 mg, 1.19 mmol) in a 25 cm3
Schlenk tube was heated under argon at 80 °C for four hours. After
the reaction mixture was cooled, diethyl ether and H2O were add-
ed and the aqueous layer was extracted with diethyl ether. The
combined ether solution was dried (MgSO4) and the solvent was
evaporated in vacuo. Purification of the residue by column chro-
matography (hexane/Et2O = 13:1) gave the corresponding product
as a colorless oil (271 mg; yield 87%).
6863 (1981); d) T. Yamamoto, J. Ishizu, and A. Yamamoto, Bull.
Chem. Soc. Jpn., 55, 623 (1982); e) T.Yamamoto, M. Akimoto, O.
Saito, and A. Yamamoto, Organometallics, 5, 1559 (1986); f) S.
Komiya, A.Yamamoto, and T.Yamamoto, Chem. Lett., 1981, 193;
g) K. Sano, T. Yamamoto, and A. Yamamoto, Chem. Lett., 1983,
115; h) K. Sano, T.Yamamoto, and A.Yamamoto, Bull. Chem. Soc.
Jpn., 57, 2741 (1984).
4
a) K. Nagayama, F. Kawataka, M. Sakamoto, I. Shimizu,
and A. Yamamoto, Chem. Lett., 1995, 367; b) K. Nagayama, F.
Kawataka, M. Sakamoto, I. Shimizu, and A. Yamamoto, Bull.
Chem. Soc. Jpn., 72, 573 (1999).
1
C3F7COC6H4-4-OMe: Colorless oil (87%); H NMR (ace-
tone-d6, r. t., 500 MHz) δ 8.09 (m, 2H, aromatic H), 7.18–7.11 (m,
2H, aromatic H), 3.96 (s, 3H, OCH3); 13C{1H} NMR (acetone-d6,
r. t., 125 MHz) δ 181.8 (t, 2JCF = 25.2 Hz, carbonyl C), 166.9 (s, ar-
omatic C), 133.7 (q, 3JCF = 3.6 Hz, aromatic C), 124.9 (s, aromatic
C), 118.7 (qt, 1JCF = 287.0 Hz, 2JCF = 34.0 Hz, CF3), 115.7 (s, aro-
matic C), 111.7 (tt, 1JCF = 268.0 Hz, 2JCF = 31.5 Hz, COCF2CF2),
112.3–107.2 (m, CF2CF2CF3), 56.4 (s, OCH3); 19F NMR (acetone-
d6, r. t., 471 MHz) δ –79.0 (t, 3JFF = 9.2 Hz, CF2CF2CF3), –111.7
(q, 3JFF = 9.2 Hz, CF2CF2CF3), –124.2 (s, COCF2CF2). GC-MS m/
z (rel intensity) 304 (100), 285 (32), 257 (31), 207 (7), 169 (22),
135 (93), 107 (98), 92 (97), 76 (99). Found: C, 43.54; H, 2.02%.
Calcd for C11H7F7O2: C, 43.44; H, 2.32%.
5
K. Nagayama, I. Shimizu, and A. Yamamoto, Bull. Chem.
Soc. Jpn., 72, 799 (1999).
6
K. Nagayama, I. Shimizu, and A. Yamamoto, Chem. Lett.,
1998, 1143.
7
For a recent review on palladium-catalyzed cross-coupling
reaction of organoboron compounds. a) N. Miyaura and A. Suzuki,
Chem. Rev., 95, 2457 (1995); b) A. Suzuki, J. Organomet. Chem.,
576, 147 (1999).
8
Palladium catalyzed cross-coupling reactions to give ke-
tones with acyl halides and organoboron compounds such as phe-
nylboronic acids and sodium arylborates have been reported. a) C.
S. Cho, K. Itotani, and S. Uemura, J. Organomet. Chem., 443, 253
(1993); b) N. A. Bumagin and D. N. Korolev., Tetrahedron Lett.,
40, 3057 (1999); c) M. Haddach and J. R. McCarthy, Tetrahedron
Lett., 40, 3109 (1999); d) G. W. Kabalka, R. R. Malladi, D. Tejedor,
and S. Kelley, Tetrahedron Lett., 41, 999 (2000). e) H. Chen and
M.-Z. Deng, Org. Lett., 2, 1649 (2000).
1
C2F5COC6H4-4-OMe: Colorless oil (86%); H NMR (ace-
tone-d6, r. t., 500 MHz) ꢀ 8.09 (m, 2H, aromatic H), 7.15 (m, 2H,
aromatic H), 3.96 (s, 3H, OCH3); 13C{1H} NMR (acetone-d6, r. t.,
2
125 MHz) ꢀ 181.9 (t, JCF = 26.0 Hz, carbonyl C), 166.9 (s, aro-
matic C), 133.5 (q, 3JCF = 3.4 Hz, aromatic C), 124.4 (s, aromatic
C), 118.7 (qt, 1JCF = 286.0 Hz, 2JCF = 35.4 Hz, CF3), 115.7 (s, aro-
matic C), 111.7 (tq, 1JCF = 268.6 Hz, 2JCF = 35.4 Hz, COCF2CF3),
56.4 (s, OCH3); 19F NMR (acetone-d6, r. t., 471 MHz) ꢀ –80.5 (s,
CF3), –113.7 (s, CF2CF3). GC-MS m/z (rel intensity) 254 (53), 207
(17), 157 (14), 135 (97), 107 (83), 92 (100), 76 (91). Found: C,
47.40; H, 2.51%. Calcd for C10H7F5O2: C, 47.26; H, 2.78%.
Cross-Coupling Reaction of Phenyl Trifluoroacetate with
Other Organoboron Compounds (Eq. 6). A typical procedure
using NaBPh4 is given below. An NMP solution (5 cm3) contain-
ing Pd(OAc)2 (11.8 mg, 0.0525 mmol), tributylphosphine (0.038
cm3, 15 mmol), phenyl trifluoroacetate (0.15 cm3, 1.0 mmol), and
sodium tetraphenylborate (416 mg, 1.22 mmol) in a 25 cm3
Schlenk tube was heated under argon at 80 °C for four hours. The
yields of phenyl trifluoromethyl ketone were determined by GC
using nC14H30 as an internal standard.
9
a) F. Ozawa, A. Kubo, and T. Hayashi, Chem. Lett., 1992,
2177; b) C. Amatore, A. Jutand, and M. A. M’Barki, Organometal-
lics, 11, 3009 (1992); c) T. Mandai, T. Matsumoto, J. Tsuji, and S.
Saito, Tetrahedron Lett., 34, 2513 (1993).
10 Cross-coupling reaction of sterically hindered arylboronic
acids with organic electrophiles is known to proceed ineffectively.
W. J. Thompson and J. Gaudino, J. Org. Chem., 49, 5237 (1984).
11 a) T. Ishiyama, M. Murata, and N. Miyaura, J. Org. Chem.,
60, 7508 (1995); b) N. Miyaura, K. Yamada, H. Suginome, and A.
Suzuki, J. Am. Chem. Soc., 107, 972 (1985). Reports on palladium-
catalyzed cross-coupling reaction of organic compounds with or-
ganoboron reagents under neutral conditions. c) T. Moriya, N.
Miyaura, and A. Suzuki, Synlett, 1994, 149; d) F. Sasaya, N.
Miyaura, and A. Suzuki, Bull. Korean Chem. Soc., 8, 329 (1987).
12 a) J. K. Liebman, A. Greenberg, and W. R. Dolbier, Jr.,
“Fluorine-containing Molecules, Structure, Reactivity, Synthesis,”
VCH, NewYork (1998); b) “Synthetic Fluorine Chemistry,” ed by
G. A. Olah, R. D. Chambers, and G. K. S. Prakash, John Wiley &
Sons, New York (1992); c) “Selective Fluorination in Organic and
Bioorganic Chemistry,” ed by J. T. Welsh, ACS Symposium Series
456 (1990).
13 The general methods for synthesizing of trifluoromethyl ke-
tones. a) J. -P. Bague, D. Bonnet-Delphon, Tetrahedron, 47, 3207
(1991); b) Y. Yokoyama and K. Mochida, Synlett, 1997, 907; c) J.
Wiedemann, T. Heiner, G. Mloston, G. K. S. Prakash, and G. A.
Olah, Angew. Chem., Int. Ed. Engl., 37, 820 (1998); d) R. P. Singh,
G. Cao, R. L. Kirchmeier, and J. M. Shreeve, J. Org. Chem., 64,
2873 (1999). e) T. Keumi, M. Shimada, M. Takahashi, and H.
Kitajima, Chem. Lett., 1990, 783.
This study was financially supported by grants from the
Ministry of Education, Science, Sports and Culture, and
Nippon Zeon Co., Ltd.
References
1
a) J. Tsuji, “Palladium Reagents and Catalysts, Innovations
in Organic Synthesis,” Wiley, Chichester (1995); b) J. P. Collman,
L. S. Hegedus, J. N. Norton, and R. G. Finke, “Principles and Ap-
plications of Organotransition Metal Chemistry,” University Sci-
ence Books, California (1987); c) A.Yamamoto, “Organotransition
Metal Chemistry,” Wiley-Interscience, NewYork (1986).
2
a) A.Yamamoto, Adv. Organometal. Chem., 34, 111 (1992);
b) Y. -S. Lin and A. Yamamoto, “Topics in Organometallic Chem-
istry,” ed by S. Murai, Springer, Berlin (1999), Vol. 3, pp. 161–192.
14 Results to be reported separately.
15 Y.-J. Kim, K. Osakada, A. Takenaka, and A. Yamamoto, J.
Am. Chem. Soc., 112, 1096 (1990).
16 T. Ukai, H. Kawazura, Y. Ishii, J. J. Bonnet, and J. A. Ibers,
J. Organomet. Chem., 65, 253 (1974).
3
a) J. Ishizu, T. Yamamoto, and A. Yamamoto, Chem. Lett.,
1976, 1091; b) T. Yamamoto, J. Ishizu, T. Kohara, S. Komiya, and
A. Yamamoto, J. Am. Chem. Soc., 102, 3758 (1980); c) T.
Yamamoto, J. Ishizu, and A. Yamamoto, J. Am. Chem. Soc., 103,