Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Conclusions
DOI: 10.1039/C6CC05428E
Domke and N. Krause, Synlett., 2007,
5, 737; (d) Cu-
In summary, we have disclosed an efficient Cu-catalyzed
atom-economic ring-opening of propargyl epoxides with
P(O)H compounds to afford a new class of 4-phosphoryl
2,3-allenols. The reactions proceed under mild conditions
and give the products highly selectively in good to high
yields. Further investigations into the reaction scope,
stereochemistry and target-oriented synthesis of phosphorus
compounds via the transformations of the densely
functionalized products are underway and will be reported
in due course. Financial support from the National Natural
Science Foundation of China (21302095), Research Fund for
the Doctoral Program of Higher Education of China
catalyzed reactions of propargyl epoxides with organolithium
reagents: A. Alexakis, I. Marek, P. Mangeney and J. F.
Normant, Tetrahedron Lett., 1989, 30, 2391. (e) Cu-catalyzed
reactions of propargyl epoxides with organozinc reagents: F.
Bertozzi, P. Crotti, F. Macchia, M. Pineschi, A. Arnold and B.
L. Feringa, Tetrahedron Lett., 1999, 40, 4893.
10 (a) Pd-catalyzed reactions of propargyl epoxides with
organozinc reagents: H. Kleijn, J. Meijer, G. C. Overbeek and
P. Vermeer, Rec. Trav. Chim. Pays-Bas, 1982, 101, 97; (b)
Pd-catalyzed reactions of propargyl epoxides with
alkynylcopper: M. Yoshida, M. Hayashi and K. Shishido,
Org. Lett., 2007,
9, 1643; (c) Pd-catalyzed reactions of
propargyl epoxides with organoborons: M. Yoshida, H. Ueda
and M. Ihara, Tetrahedron Lett., 2005, 46, 6705.
(20133221120003)
and
Jiangsu
Provincial
NSFC
11 Rh-catalyzed reactions of propargyl epoxides with
organoborons: (a) T. Miura, M. Shimada, S.-Y. Ku, T. Tamai
and M. Murakami, Angew. Chem., Int. Ed., 2007, 46, 7101; (b)
T. Miura, M. Shimada, P. de Mendoza, C.Deutsch, N. Krause
and Murakami, M. J. Org. Chem., 2009, 74, 6050.
12 Fe-catalyzed reactions of propargyl epoxides with Grignard
reagents: A. Füurstner and M. Méndez, Angew. Chem., Int.
Ed., 2003, 42, 5355.
13 Selected examples of other methods: (a) M. Inoue and
Nakada, M. Angew. Chem., Int. Ed., 2006, 45, 252; (b) G. Xia
and H. Yamamoto, J. Am. Chem. Soc., 2007, 129, 496; (c) J.
Ye, W. Fan and S. Ma, Chem. Eur. J., 2013, 19, 716; (d) X.
Huang, T. Cao, Y. Han, X. Jiang, W. Lin, J. Zhang and S. Ma,
Chem. Commun., 2015, 51, 6956; (e) A. Roy, B. A. Bhat and
S. D. Lepore, Org. Lett., 2015, 17, 900; (f) J. Park, S. H. Kim
and P. H. Lee, Org. Lett., 2008, 10, 5067; (g) A. D. Mundal;
(BK20130924) is acknowledged.
Notes and references
1
2
3
Selected reviews on allene chemistry: (a) B. Alcaide, P.
Almendros, Eds. ‘Progress in allene chemistry’ Special issue,
Chem. Soc. Rev., 2014, 43, 2879-3206; (b) S. Yu, S. Ma,
Angew. Chem. Int. Ed., 2013, 51, 13074; (c) S. Ma, Chem.
Rev., 2005, 105, 2829; (d) A. Hoffmann-Röder and N. Krause,
Angew. Chem. Int. Ed., 2004, 43, 1196.
(a) S. Webster, P. C. Young, G. Barker, G. M. Rosair and A.-
L. Lee, J. Org. Chem., 2015, 80, 1703; (b) L. Wu, H. Huang,
Y. Liang and P. Cheng, J. Org. Chem., 2014, 79, 11264; (c) B.
Alcaide, P. Almendros, A. Luna, N. Prieto, J. Org. Chem.,
2012, 77, 11388; (d) S. Ma, Z. Gu, J. Am. Chem. Soc., 2005,
127, 6182.
E. K. Lutz and J. R. Thomson, J. Am. Chem. Soc., 2012, 134
5782; (h) H. Luo and S. Ma, Eur. J. Org. Chem., 2013, 3041.
,
(a) B. Alcaide, P. Almendros, T. M. del Campoa, Org.
Biomol. Chem., 2012, 10, 7603; (b) Y. Deng, X. Jin, C. Fu
and S. Ma, Org. Lett., 2009, 11, 2169; (c) Y. Choe and P. H.
Lee, Org. Lett., 2009, 11, 1445.
14 (a) J. Kjellgren, H. Sundén and K. J. Szabó, J. Am. Chem.
Soc., 2005, 127, 1787; (b) J. Zhao and K. J. Szabó, Angew.
Chem., Int. Ed., 2016, 55, 1502; (c) T. S. N. Zhao, Y. Yang, T.
Lessing and K. J. Szabó, J. Am. Chem. Soc., 2014, 136, 7563.
15 4-Silyl 2,3-allenol has been synthesized via the addition of
R3SiAlEt2 to propargyl epoxide by the Trost group: B. M.
Trost and J. M. Tour, J. Org. Chem. 1989, 54, 484.
16 (a) R. Shen, B. Luo, J. Yang, L. Zhang and L.-B Han, Chem.
Comm., 2016, 52, 6541; (b) J. Yang, T. Chen and L. -B. Han,
J. Am. Chem. Soc., 2015, 137, 1782; (c) Early work, see: Q.
Xu and L.-B. Han, J. Organometallic Chem. 2011, 696, 130.
17 For a recent review on Cu-catalyzed C-P forming reactions,
see: H. Zhang, X.-Y. Zhang, D.-Q. Dong and Z.-L. Wang,
4
5
(a) R. W. Friesen and M. Blouin, J. Org. Chem., 1993, 58,
1653; (b) S. Ma and S. Zhao, J. Am. Chem. Soc., 1999, 121
,
7943.
(a) D. A. Mundal, K. E. Lutz and R. J. Thomson, J. Am.
Chem. Soc., 2012, 134, 5782; (b) T. Sun, C. Deutsch and N.
Krause, Org. Biomol. Chem., 2012, 10, 5965; (c) Y. Deng, Y.
Yu, S. Ma, J. Org. Chem., 2008, 73, 585; (d) B. Alcaide, P.
Almendros and R. Rodríguez-Acebes, Chem. Eur. J., 2005,
11, 5708; (e) B. Alcaide, P. Almendros, T. M. del Campo, M.
C. Redondo and I. Fernández, Chem. Eur. J., 2011, 17, 15005;
(f) B. Alcaide, P. Almendros, A. Luna and E. Soriano, J. Org.
Chem., 2015, 80, 7050.
RSC Adv., 2015, 5, 52824.
18 The reaction of 1a and 2a performed in CH3OD afforded the
C1-deuterated 3a in 91% yield (see ESI).
6
7
(a) X. Chen, X. Jiang, Y. Yu and S. Ma, J. Org. Chem., 2008,
73, 8960; (b) S. Li, B. Miao, W. Yuan and Ma, S. Org. Lett.,
2013, 15, 977; (c) E. Yoneda, T. Kaneko, S.-W. Zhang, K.
19 When 1a was treated under the catalytic conditions in the
absence of 2a, a complex mixture was formed probably due
to the decomposition of the Cu-alkynide intermediate. For a
review on Cu-alkyne and -alkynides, see: H. Lang, A. Jakob
and B. Milde, Organometallics, 2012, 31, 7661.
20 M. Yoshida, T. Gotou and M. Ihara, Chem. Commun., 2004
1124. The configuration of the C-C double bonds in has not
been determined. We reason that the reaction proceeds with
high stereoselectivity since the NMR data of indicate that
Onitsuka and S. Takahashi, Org. Lett., 2000, 2, 441.
Selected examples: (a) W. Kong, C. Fu and Ma, S. Chem.
Comm., 2009, 4572; (b) Q. Li, X. Jiang, C. Fu and S. Ma,
Org. Lett., 2011, 13, 466; (c) Y. Qiu, C. Fu, X. Zhang and S.
Ma, Chem. Eur. J., 2014, 20, 10314; (d) Y. He, X. Zhang and
X. Fan, Chem. Commun., 2015, 51, 16263; (e) B. Alcaide, P.
Almendros, J. M. Alonso, I. Fernández and S. Khodabakhshi
Adv. Synth. Catal., 2014, 356, 1370.
,
7
7
only one of the stereoisomers was formed (see ESI).
21 (a) M. S. Shepard and E. M. Carreira, J. Am. Chem. Soc.,
1997, 119, 2597; (b) T. Gillmann, T. Hülsen, W. Massa and S.
Wocadlo, Synlett, 1995, 1257; (c) A. Padwa, H. Lipka, S. H.
Watterson and S. S. Murphree, J. Org. Chem., 2003, 68, 6238.
8
9
For reviews on allene synthesis, see: (a) S. Yu and S. Ma,
Chem. Commun., 2011, 47, 5384; (b) R. K. Neff and D. E.
Frantz, ACS catal., 2014, 4, 519.
Cu-catalyzed reactions of propargyl epoxides with Grignard
reagents: (a) A. Alexakis, I. Marek, P. Mangeney and J. F.
Normant, Tetrahedron, 1991, 47, 1677; (b) A. Alexakis, I.
Marek, P. Mangeney and J. F. Normant, Tetrahedron Lett.,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins